深度学习
文章平均质量分 72
不堪沉沦
业精于勤而荒于嬉,行成于思而毁于随。
展开
-
为什么同样的模型下,联邦学习框架实现,效果比集中式的要差很多?
问题:为什么同样的模型,例如GRU,用联邦学习框架实现,效果比集中式的要差很多?文章目录问题概述1. 模型更新方式的层面2. 训练样本层面总结问题概述在联邦学习方法和集中式学习方法的训练过程,我发现联邦学习效果比集中式学习方法效果更差,针对此现象,本文做如下分析。 &n.原创 2022-05-17 17:23:47 · 1825 阅读 · 0 评论 -
深度学习中 Internal Covariate Shift 问题以及 Batch Normalization 的作用
深度学习中 Internal Covariate Shift 问题以及 Batch Normalization 的作用前言一、Batch Normalization是什么?1.1 Internal Covariate Shift1.2 Internal Covariate Shift 带来的影响1.3 如何减缓 Internal Covariate Shift 问题带来的影响白化(Whitening)白化存在的问题二、Batch Normalization2.1 传统 Normalization2.2 改进原创 2021-07-26 21:56:26 · 2942 阅读 · 4 评论 -
PyG快速安装(一键脚本,2021.7.14简单有效)
PYG一键脚本安装通过脚本安装离线本地安装安装结果测试本文提供两种方法安装都可成功安装 pyg通过脚本安装直接通过脚本安装,自建一个python脚本,直接运行即可,代码如下:import loggingimport subprocessfrom setuptools import setupimport torchcuda_v = f"cu{torch.version.cuda.replace('.', '')}"torch_v = torch.__version__.split('原创 2021-07-14 11:24:47 · 1677 阅读 · 2 评论 -
图像语义分割中的上采样(Upsampling)和下采样(subsampling)
图像语义分割中的上采样和下采样1. 下采样和上采样的基本概念最近在看到一篇论文中用到了transposed convolution,并出现了upsampling等概念,表示很迷。那么什么是upsampling ?1. 下采样和上采样的基本概念下采样: 对卷积得到的压缩特征图进行进一步压缩。实际上就是卷积层之间的池化层。作用: 通过最大池化或者平均池化从而减少了特征,进而参数的数量,且降低了卷积网络计算的复杂度;实际上就是过滤作用小、信息冗余的特征,保留关键信息(而信息关键与否就体现在对应的val原创 2020-09-27 20:42:44 · 22052 阅读 · 7 评论