机器学习
不堪沉沦
业精于勤而荒于嬉,行成于思而毁于随。
展开
-
正确理解scipy中的coo_matrix函数
正确理解scipy中的coo_matrix函数1. 构造一个空矩阵2. 使用ijv(triplet)格式构造一个矩阵3. 用重复的索引构造矩阵1. 构造一个空矩阵这种用法比较简单,直接生成一个给定维度的矩阵,并且可以指定元素类型。如下指定生成一个(3,4)且数据类型为int8的矩阵import scipy.sparse as spsp.coo_matrix((3, 4), dtype=n...原创 2020-03-21 23:31:19 · 5990 阅读 · 0 评论 -
为什么正则化能够解决过拟合问题?
为什么正则化能够解决过拟合问题一. 正则化的解释二. 拉格朗日乘数法三. 正则化是怎么解决过拟合问题的1. 引出范数1.1 L_0范数1.2 L_1范数1.3 L_2范数2. L_2范式正则项如何解决过拟合问题一. 正则化的解释为防止模型过拟合,提高模型的泛化能力,通常会在损失函数的后面添加一个正则化项。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓惩罚是指对损失函数中的某些参数做一...原创 2020-02-16 22:10:44 · 7221 阅读 · 13 评论 -
operands could not be broadcast together with shapes解决方案
矩阵相乘遇到:operands could not be broadcast together with shapes (163,5652) (5652,1)先描述一下:train_x.T 是一个(163,5662) 的ndarrayLost 是一个(5662, 1)的ndarray这里我大概明白哪里错了,首先得明白(乘以*)和(矩阵相乘dot)使用测试demoa = np.ar...原创 2020-01-17 11:21:14 · 117549 阅读 · 5 评论 -
Pandas中DataFrame和array相互转化(DataFrame数据直接水平合并)
Pandas中DataFrame和array相互转化(DataFrame数据合并,非concat)最近在写一个案例处理数据的时候,总是遇到DataFrame和array相互转化的问题,特此记录下来!先说好本文章不是指DataFrame中的merge、join、concat这种连接合并,而是单纯的数据上的拼接。如果有误进来,那抱歉啊请忽视本文章。可以去这里查看你想要的merge、conc...原创 2020-01-15 21:47:40 · 29434 阅读 · 1 评论 -
决策树ID3详解(西瓜案例)
一、决策树决策树(decision tree)是一种基本的分类与回归方法。一般情况下,回归方法可以转换为分类方法,因此,本文主要讨论用于分类的决策树。首先如果是小白,推荐一个比较好的视频讲解,简单易懂。机器学习经典算法——决策树与随机森林建议先看这个视频,然后看懂如下案例决策树主要算法有:ID3、C4.5、CART。以及进化后的C4.5算法C5.0、分类有极大提升的Tsallis等算...原创 2019-11-30 20:04:34 · 14248 阅读 · 25 评论