2025年美赛C题,要求预测未来奥运会的奖牌分布。但有个疑问:要预测2028年的奖牌分布,但我们不知道、也无法预测哪些运动员未来会参赛啊!
这时就用到了模型假设:假设2028年奥运会的参赛选手与2024年的相同。
模型务必注意两点
1、模型假设的必要性:现实中参加奥运会的选手必定有退役的、也有新人,无法确定准确名单,但这并非问题重点,为聚焦核心问题“预测奖牌”可使用模型假设简化问题。
2、模型假设的合理性:(1)一届奥运会是4年,奥运会选手的变化不会太大;(2)预测的是各国的奖牌分布,一个国家整体水平在4年内不会有太大变化。
这样一来,“不知道2028年哪些运动员参赛”的难题就解决了。
中学物理课里,就学到过伽利略著名的思想实验--“斜面实验”。他假设轨道没有摩擦力,则小球从左侧斜面滚下后,再滚上右侧斜面,最终回到与左侧初始位置相同的高度。
思想实验:如果不断减小右侧斜面的倾斜角,因为没有摩擦力,小球依然会爬升到原来的高度,在爬升的过程中将经过比原来更长的路程。如果右侧斜面已经到了水平的极限状态,而小球仍有达到原高度的“趋势”,小球为了达到原来的高度,就只能永远运动下去。
现实中处处都有摩擦力,因此我们无法从实验中实现“没有摩擦力”的假设。但正因如此它才具有科学价值:现实情况千差万别,如果全面考虑实际,那每换一种环境都有相应摩擦力,就需要新建一个模型;虽然现实中必定含有摩擦力,却都可以视为模型假设的“退化状态”,在理论上是完全合理的,人们也可以据此抓住主要矛盾做出更多科学的推论。
常用的假设方法
-
理想化假设:例如忽略摩擦力;下届奥运会参赛选手不变;
-
均匀化假设:例如假设资源分布合理(如火灾模型中树木均匀分布);
-
线性化假设:例如把非线性问题简化为线性(小范围短时间内人口迁移);
确保假设的合理性
-
数据支持:用历史数据验证假设(例如过去10年人口迁移率波动小于5%)
-
文献支持:查文献,直接引用论文中的信息(最常用的方法)
-
逻辑自洽:不能同时假设“资源无限”和“竞争导致资源增长受限”
优秀模型假设案例
1、人口增长模型的合理简化
-
假设内容:假设人口封闭(无迁移)、出生率和死亡率为常数,且资源充足无环境承载力限制。
-
优点:忽略次要因素(如突发灾害)聚焦核心变量(出生率、死亡率),适用于短期预测。结合Logistic模型可扩展至长期分析。
-
合理性验证:可利用历史数据验证假设波动范围(如出生率波动小于2%),确保假设与实际问题匹配。
2、减肥计划的代谢系数恒定假设
-
假设内容:假设人体代谢消耗系数为常数,忽略个体差异和代谢动态变化。
-
优点:通过分段模型(如分阶段调整热量摄入)平衡简化与精度,结合运动量修正代谢系数,最终制定可行减肥方案。
-
合理性:个体差异与代谢动态变化在统计意义上具有回归性,基于该假设的模型具有普适性。
较差的模型假设案例
1、过度简化的非线性关系假设
-
问题案例:牙膏销售量模型中,假设销售量与价格差、广告费用呈严格线性关系,忽略市场饱和效应和消费者心理阈值。
-
改进方向:采用非线性回归(如指数函数或分段函数)拟合数据,或引入交互项(如价格与广告的协同效应)
2、脱离实际的物理模型假设
-
问题案例:圆桶投海问题中,假设“圆桶与海底碰撞速度仅由水深决定”,忽略洋流、海底地形等因素,导致安全评估失效
-
改进方向:结合流体力学模拟碰撞过程,或通过实验数据修正速度计算公式。
3、静态假设无法适应动态变化
-
问题案例:存贮模型中假设“需求量为固定常数”,未考虑季节性波动或促销活动影响,导致库存策略失效。
-
改进方向:引入时间序列分析或随机过程(如泊松分布)描述需求波动。
总结
分类 | 优秀假设特点 | 较差假设特点 |
---|---|---|
简化程度 | 忽略次要因素,保留核心变量 | 过度简化或忽略关键变量 |
数据支持 | 基于历史数据或文献验证 | 缺乏数据支撑或主观臆断 |
动态适应性 | 分阶段调整或引入修正参数 | 静态假设无法响应变化 |
理论性 | 符合问题各专业背景常识 | 不了解专业知识的低级错误 |