目录
模型总结
数学优化问题
- 线性规划:用于资源分配问题,目标是最大化或最小化线性目标函数。
- 半定规划:处理变量的对称矩阵是半正定的问题。
- 几何规划:优化问题中的变量和目标函数都是几何形式的。
- 非线性规划:目标函数或约束条件是非线性的。
- 整数规划:变量需要是整数。
- 多目标规划:涉及多个目标函数的优化,常用分层序列法。
- 最优控制:结合微分方程组,解决动态系统的控制问题。
- 变分法:用于求解偏微分方程和优化问题。
- 动态规划:解决多阶段决策过程的优化问题。
- 存贮论:研究库存管理和最优控制策略。
预测模型
- 微分方程:描述系统状态随时间变化的数学模型。
- 小波分析:用于信号处理和数据压缩。
- 回归分析:预测连续数值的统计方法。
- 灰色预测:处理不确定性和不完全信息的预测方法。
- 马尔可夫预测:基于马尔可夫链的预测模型。
- 时间序列分析:分析时间序列数据的统计方法,如ARIMA。
- LSTM神经网络:长短期记忆网络,用于时间序列预测。
- 混沌模型:用于描述和预测混沌系统的行为。
- 支持向量机:用于分类和回归的机器学习方法。
- 神经网络预测:深度学习模型,用于复杂模式识别和预测。
动态模型
- 微分方程模型:包括常微分方程(ODE)、随机微分方程(SDE)、延迟微分方程(DDE)等。
- 差分方程模型:离散时间系统的数学模型。
- <