索引及常见SQL优化总结

本文详细介绍了MySQL索引的原理、类型及其优缺点,重点讨论了B+Tree索引和Hash索引。内容涵盖InnoDB存储引擎为何选择B+Tree,索引分类,以及索引在SQL查询中的应用和优化。此外,还探讨了插入数据、主键设计原则、SQL性能分析(如慢查询日志、EXPLAIN执行计划)以及各种SQL语句的优化策略,旨在提升数据库性能。
摘要由CSDN通过智能技术生成

索引概述

介绍

索引(index)是帮助MySQL 的 ( )。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

优缺点

在这里插入图片描述

索引结构

在这里插入图片描述

二叉树

在这里插入图片描述

B-Tree(多路平衡查找树)

以一颗最大度数(max-degree)为5(5阶)的b-tree为例(每个节点最多存储4个key,5个指针):
在这里插入图片描述

树的度数指的是一个节点的子节点个数。

插入 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 数据为例。

在这里插入图片描述
具体动态变化的过程可以参考网站:

B+Tree

以一颗最大度数(max-degree)为4(4阶)的b+tree为例:

在这里插入图片描述

插入 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 数据为例。

在这里插入图片描述
相对于B-Tree区别:

  1. 所有的数据都会出现在叶子节点
  2. 叶子节点形成一个单向链表

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能。

在这里插入图片描述

Hash

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

在这里插入图片描述

Hash索引特点
  1. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
  2. 无法利用索引完成排序操作
  3. 查询效率高,通常只需要一次检索就可以了,效率通常要高于B+tree索引
存储引擎支持

在MySQL中,支持hash索引的是Memory引擎,而InnoDB中具有自适应hash功能,hash索引是存储引擎根据B+Tree索引在指定条件下自动构建的。

为什么InnoDB存储引擎选择使用B+tree索引结构?

  1. 相对于二叉树,层级更少,搜索效率高;
  2. 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一
    页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的
    高度,导致性能降低;
  3. 相对Hash索引,B+tree支持范围匹配及排序操作;

索引分类

在这里插入图片描述

在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

在这里插入图片描述

聚集索引选取规则:

  1. 如果存在主键,主键索引就是聚集索引。
  2. 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  3. 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

InnoDB主键索引的B+tree高度为多高呢?

假设:
一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6
个字节的空间,主键即使为bigint,占用字节数为8。
高度为2:
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170 
1171* 16 = 18736 
高度为3:
1171 * 1171 * 16 = 21939856

索引语法

创建索引

在这里插入图片描述

查看索引

在这里插入图片描述

删除索引

在这里插入图片描述

SQL性能分析

SQL执行频率

MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

mysql>  show global status like 'Com_______';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_binlog    | 0     |
| Com_commit    | 19    |
| Com_delete    | 0     |
| Com_insert    | 16    |
| Com_repair    | 0     |
| Com_revoke    | 0     |
| Com_select    | 102   |
| Com_signal    | 0     |
| Com_update    | 16    |
| Com_xa_end    | 0     |
+---------------+-------+
慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启Mysql慢日志查询开关
show_query_log=1
# 设置慢日志的时间为2秒, 语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2

配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息 /var/lib/mysql/localhost-slow.log

profile详情

show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:

select @@have_profiling;

默认profiling是关闭的,可以通过set语句在session/global级别开启profiling:

set profiling=1;

执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:

# 查看每一条SQL的耗时基本情况
show profiles;
#查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
#查看指定query_id的sql语句CPU的使用情况
show profile cpu for query query_id;
explain执行计划

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。

语法:

# 直接在select语句之前加上关键字explain / desc
explain select * from stu;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
|  1 | SIMPLE      | stu   | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    6 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+

EXPLAIN 执行计划各字段含义:

  • Id
    select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
  • select_type
    表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
  • type
    表示连接类型,性能由好到差的连接类型为NULL、system、const、eq_ref、ref、range、 index、all 。
  • possible_key
    显示可能应用在这张表上的索引,一个或多个。
  • Key
    实际使用的索引,如果为NULL,则没有使用索引。
  • Key_len
    表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。
  • rows
    MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的。
  • filtered
    表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。
索引使用
最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将部分失效(后面的字段索引失效)。

范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效

索引列运算

不要在索引列上进行运算操作, 索引将失效。

字符串不加引号

字符串类型字段使用时,不加引号, 索引将失效。

模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

or连接的条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

SQL提示

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
use index:

覆盖索引

尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少 select *。

using index condition :查找使用了索引,但是需要回表查询数据
using where; using index :查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据

前缀索引

当字段类型为字符串(varchar,text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

  • 语法
    在这里插入图片描述
  • 前缀长度
    可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

在这里插入图片描述

  • 前缀索引查询流程

在这里插入图片描述

单列索引与联合索引

单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

SQL优化

插入数据
insert优化
  1. 手动提交事务
    在这里插入图片描述
  2. 主键顺序插入
    在这里插入图片描述
  3. 大批量插入数据
    在这里插入图片描述
主键优化
  • 数据组织方式
    在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
    在这里插入图片描述
  • 页分裂
    页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。
    在这里插入图片描述
    页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。

在这里插入图片描述
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。
在这里插入图片描述

  • 页合并

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

在这里插入图片描述

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

主键设计原则

满足业务需求的情况下,尽量降低主键的长度。

  1. 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  2. 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  3. 业务操作时,避免对主键的修改。
order by优化
  1. using filesort: 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。
  2. Using index通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index ,不需要额外排序,操作效率高

总结:

  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • 尽量使用覆盖索引。
  • 多字段排序一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)
  • 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小,sort_buffer_size(默认256)。
groupby优化
  • 在分组操作时,可以通过索引来提高效率。
  • 分组操作时,索引的使用也是满足最左前缀法则的
limit优化

一个常见又非常头疼的问题就是limit2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000-2000010 的记录,其他记录丢弃,查询排序的代价非常大。

优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

在这里插入图片描述

count优化
  • MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高;
  • InnoDB引擎就麻烦了,它执行count(*)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

count的几种用法:

  • count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。

  • 用法:count(*)、count(主键)、count(字段)、count(1)

  • count(主键)

    • InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)
  • count(字段)

    • 没有notnull约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。
    • 有notnull约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
  • count(1)

    • InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
  • count(*)

    • InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段)<count(主键id)<count(1)≈count(),所以尽量使用count()。

update优化

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值