10.14 周一
复习了一下上午学的时间序列分析,补充了一些定义,大致看了一眼数理逻辑的笔记,准备晚上去看看日语那两行吧。
下午三点多到了实验室,开始看论文,Today Duty:Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems
看前疑问:Attention怎么用的,long-term信息存储在哪里?
我看不懂这个。。
换了一篇看: End-to-End Task-Completion Neural Dialogue Systems 之前看过 但是没完全懂 再看一遍
10.18周五
这周我都在做什么啊。。怎么第二次写 就到了周五了 我消失的四天呢。。。
今天主要是各种复习和整理,从下午三点多到了六点半的整理
记录一下网址 RKHS https://blog.csdn.net/ChangHengyi/article/details/80577318
回到之前说的end-to-end那篇论文 我发现篇blog http://www.xuwei.io/2019/02/27/《end-to-end-task-completion-neural-dialogue-systems》论文笔记/ 写的是真好啊! 整洁清晰,吹一波
区分了意图,以及各种错误的类型,针对这些错误类型,做了实验,来验证 哪些错误类型影响更大
但是它abstract里面说,它的主要工作室提出了一种端到端的框架,可能那个图中的框架就是它提出来的?
看下一篇Multi-domain Dialog State Tracking using Recurrent Neural Networks
多领域的,它的目标是弄一个open-domain的对话,而不是限定在餐馆预定什么的,它说自己的第一个做这个的。
我觉得 在弄这个之前 要去看一下什么是信念网络
10.19
https://juejin.im/entry/5bdbe74df265da616d53a1aa 对话系统的论文推荐
https://my.oschina.net/u/876354/blog/1626639这篇文章写了RBM以及DBN 但是实在没看懂
Multi-domain Dialog State Tracking using Recurrent Neural Networks 继续在看这个,好像是把带有信息的文本槽 替换 加上迁移学习 (对模型造成什么影响呢)
https://zhuanlan.zhihu.com/p/61616769这个算是部分对Multi-domain的解读
下午看一下DSTC 在上面第一个的连接里面能找到 以及继续看Multi-domain
对话系统中的DSThttps://www.yanxishe.com/blogDetail/9572
Machine Learning for Dialog State Tracking.A Review看这个 综述 没看完
状态感觉不太好 看一会机器学习的书吧 记记笔记可能会舒服些
http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html这篇文章写得太好了 学SVM 要看这个