R可视乎|灯芯柱状图代码解读

本文详细介绍了如何使用R语言中的tidyverse、ggtext等库创建灯芯柱状图,包括数据预处理、嵌套柱状图的实现、颜色区分和添加个性化文本。通过实例展示了如何展示动物救援数据的时间趋势及各类型动物比例变化。
摘要由CSDN通过智能技术生成

简介

这篇推文代码来源于:TidyTuesday,主要想学习如何绘制灯芯柱状图(名字小编瞎取的),最终结果如下:

注释:与普通柱状图相比,灯芯柱状图不仅可以展示随时间变化的总体趋势(图中黑色柱子 “Rescues”),而且能够清晰展示灯芯内部数据(图中浅灰色柱子 “cats”)相对于总体的比例随时间的变化。

看到最终成品,读者是否可以根据自己所学知识,回答以下几个问题:

  1. 如何实现两个柱状图嵌套?

  2. 如何使得2020年份数据单独显示为粉色?

  3. 如何在柱状图上方添加文字,其中一些文字包括其他单词?

接下来,小编带你解读源代码,并回答以上问题。读者可以根据这些知识要点,灵活应用到其他图形中。

数据介绍

从文件 animal_rescues.txt 中读取数据,并对数据进行预处理,包括分类汇总和计数。

注意:由于时间和文章篇幅原因,数据处理部分不做过多介绍。读者可以根据格式,使用自己比较感兴趣的数据。

library(tidyverse)
library(ggtext)
library(ggrepel)
library(patchwork)
library(systemfonts)
# 数据读取+处理 ========
df_animals <- readr::read_csv('animal_rescues.txt')

df_animals_agg <-
  df_animals %>% 
  mutate(
    animal_group_aggregated = case_when(
      str_detect(animal_group_parent, "Domestic|Livestock|Farm|Horse|Cow|Sheep|Goat|Lamb|Bull") ~ "Other Domestic Animals",
      animal_group_parent %in% c("Cat", "cat") ~ "Cats",
      animal_group_parent %in% c("Bird", "Budgie") ~ "Birds",
      animal_group_parent == "Dog" ~ "Dogs",
      animal_group_parent == "Fox" ~ "Foxes",
      TRUE ~ "Other Wild Animals"
    )
  ) %>% 
  count(cal_year, animal_group_aggregated) %>% 
  group_by(animal_group_aggregated) %>% 
  mutate(
    total = sum(n),
    current = n[which(cal_year == 2021)]
  ) %>% 
  ungroup() %>% 
  mutate(
    animal_group_aggregated = fct_reorder(animal_group_aggregated, total),
    animal_group_aggregated = fct_relevel(animal_group_aggregated, "Other Domestic Animals", after = 0),
    animal_group_aggregated = fct_relevel(animal_group_aggregated, "Other Wild Animals", after = 0)
  )

df_animals_labs <-
  df_animals_agg %>% 
  filter(cal_year == 2016) %>% 
  group_by(animal_group_aggregated) %>% 
  mutate(n = case_when(
    animal_group_aggregated == "Cats" ~ 320,
    animal_group_aggregated %in% c("Birds", "Dogs") ~ 135,
    TRUE ~ 55
  ))

df_animals_annotate <-
  df_animals_agg %>% 
  mutate(label = "\n\n← Number of Rescues in 2021 so far.") %>% 
  filter(cal_year == 2021 & animal_group_aggregated == "Cats")

df_animals_sum <-
  df_animals_agg %>% 
  filter(cal_year < 2021) %>% 
  group_by(cal_year) %>% 
  summarize(n = sum(n))

绘图主要使用 df_animals_sum,以下是该数据预览:

画图

绘图代码使用了 R 中的多个包(tidyverse, ggtext, ggrepel, patchwork, systemfonts)来创建一个特定风格的统计图表。以下是代码的主要步骤和功能:

设置主题和风格:

设置基础主题为 theme_minimal,指定了基本字体大小和字体家族。使用 theme_update 对不同图表元素进行自定义,包括文本样式、轴样式、网格线样式等。

# 主题设置 ====== 
theme_set(theme_minimal(base_size = 19))
# 自定义主题细节
theme_update(
  text = element_text(color = "grey12"),
  axis.title = element_blank(),
  axis.text.x = element_text(),
  axis.text.y = element_blank(),
  panel.grid.major.y = element_blank(),
  panel.grid.minor = element_blank(),
  plot.margin = margin(20, 5, 10, 10),
  plot.subtitle = element_textbox_simple(size = 14, lineheight = 1.6),
  plot.title.position = "plot",
  plot.caption = element_text( color = "#b40059", hjust = .5, size = 10, margin = margin(35, 0, 0, 0))
)

数据可视化

为了更好解读代码中的细节部分,小编将代码进行分解,一步步展示细节内容。完整绘图代码见文末,或者可以在我的 Github 中找到源代码和数据。

  1. 创建一个柱状图 (geom_col) 表示不同年份的动物救援数量。
  df_animals_sum %>% 
  ggplot(aes(cal_year, n)) +
  geom_col(aes(fill = factor(cal_year)), width = .85) 

  1. 再添加一个柱状图,指定 datafill 参数,并通过修改 width 实现嵌套。这里数据进行过滤,选择 2021 年前数据,并且选择 animal_group_aggregated == "Cats"。另一个细节:alpha = cal_year == 2020 透明度根据是否 cal_year==2000 进行设置。 如果是则 fill = “white”。
geom_col(
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021),
    aes(alpha = cal_year == 2020), # 这里有细节!
    fill = "white", width = .5 # 宽度和透明度设置
  )

加入该代码后,绘图结果为:

  1. 使用 geom_text 在图上添加文本标签。对数据进行处理,添加新列文本数据,实现添加其他文字。df_animals_sum %>% mutate(n_lab = if_else(cal_year %in% c(2009, 2020), paste0(n, "\nRescues"), as.character(n)))
  geom_text( #添加文本+加入rescues
    data = df_animals_sum %>% 
      mutate(n_lab = if_else(cal_year %in% c(2009, 2020), paste0(n, "\nRescues"), as.character(n))),
    aes(label = n_lab), size = 4.3, lineheight = .8, 
    nudge_y = 12, vjust = 0, color = "grey12", fontface = "bold"
  ) +
  geom_text( #添加文本+加入cats
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021) %>% 
      mutate(n_lab = if_else(cal_year %in% c(2009, 2020), paste0(n, "\nCats"), as.character(n))), 
    aes(label = n_lab), 
    color = "white", lineheight = .8, size = 4.3, 
    nudge_y = 12, vjust = 0, fontface = "bold"
  ) +
  geom_text( # 手动添加年份标签
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021),
    aes(y = -15, label = cal_year, color = factor(cal_year)), 
    size = 6, hjust = .5, vjust = 1
  ) 

  1. 调整图表样式:自定义图表的标题、副标题、图例等元素的样式。通过 scale_fill_manual(values = c(rep("grey30", 11), "#b40059"), guide = "none") 实现手动颜色填充,突出 2020 年数据。
  coord_cartesian(clip = "off") +
  scale_y_continuous(limits = c(-15, NA)) +
  scale_color_manual(values = c(rep("grey30", 11), "#b40059"), guide = "none") +
  scale_fill_manual(values = c(rep("grey30", 11), "#b40059"), guide = "none") +
  scale_alpha_manual(values = c(.25, .4), guide = "none") +
  theme(
    # plot.title = element_markdown(size = 28, margin = margin(5, 35, 25, 35), color = "black"),
    # plot.subtitle = element_textbox_simple(margin = margin(5, 35, 15, 35)),
    panel.grid.major = element_blank(),
    axis.text.x = element_blank()
  )

最终结果如下:

绘图完整代码

   df_animals_sum %>% 
  ggplot(aes(cal_year, n)) +
  geom_col(aes(fill = factor(cal_year)), width = .85) +
  geom_col(
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021),
    aes(alpha = cal_year == 2020), # 这里有细节!
    fill = "white", width = .5 # 宽度和透明度设置
  ) +
  geom_text( #这里的数据处理:添加文本+加入rescues
    data = df_animals_sum %>% 
      mutate(n_lab = if_else(cal_year %in% c(2009, 2020), paste0(n, "\nRescues"), as.character(n))),
    aes(label = n_lab), size = 4.3, lineheight = .8, 
    nudge_y = 12, vjust = 0, color = "grey12", fontface = "bold"
  ) +
  geom_text( #添加文本+加入cats
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021) %>% 
      mutate(n_lab = if_else(cal_year %in% c(2009, 2020), paste0(n, "\nCats"), as.character(n))), 
    aes(label = n_lab), 
    color = "white", lineheight = .8, size = 4.3, 
    nudge_y = 12, vjust = 0, fontface = "bold"
  ) +
  geom_text( # 手动添加年份标签
    data = df_animals_agg %>% filter(animal_group_aggregated == "Cats" & cal_year < 2021),
    aes(y = -15, label = cal_year, color = factor(cal_year)), 
    size = 6, hjust = .5, vjust = 1
  ) +
  coord_cartesian(clip = "off") +
  scale_y_continuous(limits = c(-15, NA)) +
  scale_color_manual(values = c(rep("grey30", 11), "#b40059"), guide = "none") +
  scale_fill_manual(values = c(rep("grey30", 11), "#b40059"), guide = "none") +
  scale_alpha_manual(values = c(.25, .4), guide = "none") +
  theme(
    # plot.title = element_markdown(size = 28, margin = margin(5, 35, 25, 35), color = "black"),
    # plot.subtitle = element_textbox_simple(margin = margin(5, 35, 15, 35)),
    panel.grid.major = element_blank(),
    axis.text.x = element_blank()
  )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值