如何复现大佬论文的代码?

paperswithcode网站提供最新研究论文和对应代码,便于用户复现实验,理解算法。用户可以查找论文、查看代码、获取数据集和结果,还有论文结果对比。代码通常存储在GitHub上,方便下载研究。遇到问题,可通过搜索引擎或直接在github仓库留言解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

今天赵小编给大家推荐一个非常实用的网站 papers with code

在这个网站上你可以检索论文并且还能获得该论文对应的代码,这样就可以通过复现他人的实验结果来加深对论文方法的理解,赶紧收藏链接吧~

详细介绍

  • 网站首页

包含了最新趋势的研究论文,以及菜单栏包含了数据集、方法等。

网站首页截图

下面给出每篇文章的标题,摘要,年份,使用的语言以及红色框框给出了 papar 原文和 code 源代码。

  • 点击文章标题,得到下面界面

相应代码都被存储在 github 上,获取也非常方便。网站还会把部分论文的数据集和结果一起提供,非常人性化。后面给出 Results from the Paper,你可以直接查看论文的结果,不需要翻开文章阅读。

文章内部界面(上)

小编觉得最有趣的事,还给出了 paper 中的结果以及和其他模型的比对结果,如下图所示:

文章内部界面(下)

点击 Paper 即可快速得到对应的论文原件(免费噢!)[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ugv5rM7z-1627531919836)()]

免费论文

点击进入代码对应的 github,你会得到下面界面,如果没有使用过github,可以直接下载 ZIP 格式到本地,然后对里面的代码进行研究!

代码对于的github

当然,有的文章代码会出现报错的问题(年份久了,自己电脑配置不同),这时你可以通过必应,谷歌查询解决方案,甚至可以在该 github 仓库的 issues 中给作者留言寻求帮助。

### 使用 AutoDL 和 PyCharm 复现 YOLOv10 的目标检测代码 要在 AutoDL 平台上使用 PyCharm 进行 YOLOv10 的目标检测代码复现,以下是详细的说明: #### 1. 创建并配置虚拟环境 为了确保依赖项管理得当,在开始之前需创建一个新的 Conda 虚拟环境。这可以通过以下命令完成: ```bash conda create -n yolov10_env python=3.10 ``` 激活该虚拟环境以便安装必要的库和框架[^3]。 #### 2. 安装所需的依赖项 进入已创建的虚拟环境中后,需要安装运行 YOLOv10 所必需的所有依赖项。通常情况下,这些依赖项会列在一个 `requirements.txt` 文件中。如果存在此文件,则可通过如下方式一次性安装所有依赖项: ```bash pip install -r requirements.txt ``` 如果没有提供具体的 `requirements.txt` 文件,则手动安装常见的深度学习库如 TensorFlow 或 PyTorch 及其附加组件可能是一个好的起点。例如对于 PyTorch 用户来说: ```bash pip install torch torchvision torchaudio ``` #### 3. 数据准备与上传 由于本地开发机上的数据传输至云端可能会比较耗时,建议先将训练集打包成 ZIP 格式再上传到 AutoDL 提供的数据存储区域(比如 `/autodl-tmp/`)。之后可以在终端执行解压操作来释放所需资源: ```bash cd /autodl-tmp/ unzip dataset.zip ``` 注意调整上述路径以匹配实际使用的目录结构[^4]。 #### 4. 设置远程调试连接 为了让开发者能够在熟悉的 IDE 中高效工作而不是仅限于 SSH 终端界面下的编辑器,可以设置从本地计算机到云实例之间的安全隧道用于支持断点调试等功能。具体步骤包括但不限于开启服务监听以及配置防火墙规则允许特定端口通信等。 在 PyCharm Professional Edition 中启用 Remote Interpreter 功能,并指定早前建立起来的那个基于 Conda 的解释器作为项目的基础运行环境。 #### 5. 编写或修改模型定义脚本 参照官方文档或者社区分享出来的实现版本定制化自己的网络架构部分;同时也要考虑到输入图片尺寸预处理逻辑等方面差异所带来的影响因素。最终得到一份完整的可部署解决方案。 #### 示例代码片段展示如何调用训练过程中的主要函数入口point: ```python import os from models import Model_YoloV10 # 假设这是自定义模块的位置 def main(): model = Model_YoloV10() data_dir = '/path/to/dataset' output_dir = './results' if not os.path.exists(output_dir): os.makedirs(output_dir) trainer = Trainer(model=model, data_path=data_dir, save_path=output_dir) trainer.train() if __name__ == "__main__": main() ``` 以上就是整个流程概述及其对应的技术要点解析[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值