逆元 【简单的知识点】

我们经常会遇到求这种问题
ans=a/b (mod p)
我们所知道的同余定理,只能够用于加减乘,唯独除法不可以用。
(a + b) % p = (a%p + b%p) %p

(a - b) % p = (a%p - b%p) %p

(a * b) % p = (a%p * b%p ) % p

所以这种时候就可以用逆元了, 将除法弄成乘法,乘法就有同余定理了。
( a / b ) % p =a * inv ( b , p ) %p =( a%p * inv ( b , p )%p ) %p

逆元

定义
a*x = 1 (mod p) 这时候称x为a对p的逆元 。
解法

1)逆元一般可以用欧几里得算法来解决
前提 gcd ( a , p ) =1 . 只有两者互质才会有逆元。
代码 求inv(a,p) ;

void exgcd (LL a,LL b,LL &x,LL &y,LL &d) {
    if(b==0) {  d=a; x=1; y=0; }
    else {
        exgcd(b,a%b,y,x,d);
        y-=x*(a/b);
    }
}
LL inv(LL a,LL p){
    LL d,x,y;
    exgcd(a,p,x,y,d);
    return d==1?(x%p+p)%p:-1; 
}

2)可以用费马小定理解 inv ( a , p )
前提 gcd( a , p )==1 【两个数字只有是互质才有】 & p为素数
inv( a , p ) = power ( a , p - 2 , p ) 【此处可以用,快速幂取模来解】
代码

LL power(LL a,LL b,LL p){
    LL s=1LL,base=a%p;
    while(b){
        if(b&1) s=s*base%p;
        base=base*base%p;
        b>>=1;
    }
    return s;
}

3 ) 如果要预处理1-n的逆元, 有个递归式子我们可以用。
这里写图片描述

    inv[1] = 1;   // 求1-n对mod的逆元   [注意mod要是素数]
    for(int i=2;i<N;i++){  
        if(i >= MOD) break;  //大于mod的时候是不存在的。
        inv[i] = (MOD - MOD / i) * inv[MOD % i] % MOD;  
    }  

应用
1) 可以用来求解小型的组合数(也是对最后答案取模的)。

LL k[N];  LL p; 
void init(){  
    k[0]=1;  
    for(int i=1;i<=10000;i++)   
        (k[i]=k[i-1]*i)%=p;  
}  
LL qkm(LL a,LL b,LL c)  {  
    LL s=1,base=a%c;
    while(b){
        if(b&1) s=s*base%c;
        base=base*base%c;
        b>>=1;
    }
    return s%c;
}  
LL C(LL n,LL m,LL p){  // 因为有除法,所以这里要用费马定理
    return ( ( k[n]*qkm( ( k[n-m]*k[m]) %p , p-2 , p ) ) %p );  //取模,两次!很关键k[n-i]*k[i]也会爆LL  
}  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值