【面向计算机的数理逻辑/软件理论基础笔记】命题逻辑系统的推理机制

形式系统 L L L

  • 命题逻辑形式系统 L L L的组成:
    • 命题逻辑公式集 F ( S ) F(S) F(S)
    • 三条公理:
      • 宽容律: L 1 : A → ( B → A ) L_{1}:A \to (B \to A) L1:A(BA)
      • 蕴含分配律: L 2 : ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) L_{2}:(A \to (B \to C)) \to ((A \to B) \to (A \to C)) L2:(A(BC))((AB)(AC))
      • 逆否命题法则: L 3 : ( ¬ A → ¬ B ) → ( B → A ) L_{3}: (\neg A \to \neg B) \to (B \to A) L3:(¬A¬B)(BA)
    • 一条推理规则:Modus Ponens 规则(简称 M P MP MP规则),又叫分离规则
      M P MP MP:当我们知道了由 A A A可以推导出 B B B,也就是 A → B A \to B AB,而我们知道了 A A A,则我们可以由此得到 B B B,公式表示为:
      A → B , A B \frac {A \to B,A}{B} BAB,A
  • L 1 , L 2 , L 3 L_{1},L_{2},L_{3} L1,L2,L3是公理模式,由此可以得到无穷多个公理
  • 使用逆否命题法则时注意,反过来推 ( A → B ) → ( ¬ B → ¬ A ) ( A \to B) \to (\neg B \to\neg A) (AB)(¬B¬A)是不成立的
  • A ∈ F ( S ) A \in F(S) AF(S),那么也意味着 ¬ A , ¬ ¬ A , ¬ ¬ ¬ A , . . . ∈ F ( S ) \neg A,\neg \neg A,\neg \neg\neg A,... \in F(S) ¬A,¬¬A,¬¬¬A,...F(S)
  • 不需要任何前提的公式叫做公理

L L L的证明与定理

  • L L L中的一个证明是一个有限公式序列: A 1 , A 2 , . . . , A n A_{1},A_{2},...,A_{n} A1,A2,...,An,这些公式分为三类
    • 第一类: A i A_{i} Ai本身就是公理;
    • 第二类:存在 j , k < i j,k<i j,k<i,使得 A i A_{i} Ai是由 A j A_{j} Aj A k A_{k} Ak使用 M P MP MP规则推导出来的定理;
    • 第三类:最后一项公式 A n A_{n} An是推导出来的最终定理,通常称为结论,记作 ⊢ A n \vdash A_{n} An n n n叫做证明的长度。

每个公理都是定理,定理也可以当作公理适用于证明中

  • L L L的证明题: ⊢ ( p 1 → p 2 ) → ( p 1 → p 1 ) \vdash (p_{1} \to p_{2}) \to (p_{1} \to p_{1}) (p1p2)(p1p1)
    • 证明:
      ( 1 ) p 1 → ( p 2 → p 1 ) L 1 公 理 一 宽 容 律 ( 2 ) ( p 1 → ( p 2 → p 1 ) ) L 2 公 理 二 蕴 含 分 配 律 ( 3 ) ( p 1 → p 2 ) → ( p 1 → p 1 ) M P ( 1 , 2 ) 根 据 第 一 条 公 式 ( 1 ) 和 第 二 条 公 式 ( 2 ) 进 行 推 理 \begin{aligned} & (1)p_{1} \to (p_{2} \to p_{1}) && L_{1} && 公理一宽容律 \\ &(2)(p_{1} \to (p_{2} \to p_{1})) && L_{2} && 公理二蕴含分配律 \\ &(3) (p_{1} \to p_{2}) \to (p_{1} \to p_{1}) \qquad && MP(1,2) \qquad &&根据第一条公式(1)和第二条公式(2)进行推理\\ \end{aligned} (1)p1(p2p1)(2)(p1(p2p1))(3)(p1p2)(p1p1)L1L2MP(1,2)(1)(2)

答案解释:

  • 像这样没有前提,直接需要证明结果的题,我们需要借助三条公理和推理规则来进行证明。
  1. 首先,观察结论,发现结论 ( p 1 → p 2 ) → ( p 1 → p 1 ) (p_{1} \to p_{2}) \to (p_{1} \to p_{1}) (p1p2)(p1p1)的格式和公理二的结论很相似 ( A → B ) → ( A → C ) (A \to B) \to (A \to C) (AB)(AC),所以我们要寻找符合公理二前提的式子 A → ( B → C ) A \to (B \to C) A(BC)
  2. 我们发现 p 1 → ( p 2 → p 1 ) p_{1} \to (p_{2} \to p_{1}) p1(p2p1)符合公理二的前提,而且这个式子也和公理一 A → ( B → A ) A \to (B \to A) A(BA)完全相符,因此可以直接将 p 1 → ( p 2 → p 1 ) p_{1} \to (p_{2} \to p_{1}) p1(p2p1)拿来作为公式使用;
  3. 因此,在证明过程中,我们根据公理一,得出公式 p 1 → ( p 2 → p 1 ) p_{1} \to (p_{2} \to p_{1}) p1(p2p1),再根据公理二,得到公式(1)和结论的推理关系,最终,通过推理规则 M P ( 1 , 2 ) MP(1,2) MP(1,2),根据公式(1)和公式(2)得到我们需要的结论公式(3)。

推演

  • Γ ⊂ F ( S ) \Gamma \subset F(S) ΓF(S), 从 Γ \Gamma Γ出发的 L L L中一个推演是一有限公式序列 A 1 , A 2 , . . . , A n A_{1},A_{2},...,A_{n} A1,A2,...,An,这些公式分为四类:
    • 第一类: A i A_{i} Ai本身就是公理;
    • 第二类:存在 j , k < i j,k<i j,k<i,使得 A i A_{i} Ai是由 A j A_{j} Aj A k A_{k} Ak使用 M P MP MP规则推导出来的公理;
    • 第三类:最后一项公式 A n A_{n} An称为 L L L中的一个定理,记作 ⊢ A n \vdash A_{n} An,n叫做证明的长度;
    • 第四类: A i A_{i} Ai Γ \Gamma Γ中的成员。(在 L L L的一个证明是一个有限公式序列中没有此类)
  • 例题一: { A , B → ( A → C ) } ⊢ B → C \{A, B \to (A \to C)\} \vdash B \to C {A,B(AC)}BC
    • 证明:
      ( 1 ) A Γ ( 2 ) B → ( A → C ) Γ ( 3 ) ( B → ( A → C ) ) → ( ( B → A ) → ( B → C ) ) L 2 ( 4 ) ( B → A ) → ( B → C ) M P ( 2 , 3 ) ( 5 ) A → ( B → A ) L 1 ( 6 ) B → A M P ( 1 , 5 ) ( 7 ) B → C M P ( 4 , 6 ) \begin{aligned} & (1) A && \Gamma \\ & (2) B \to (A \to C) && \Gamma \\ &(3) (B \to (A \to C)) \to ((B \to A) \to (B \to C)) \qquad && L_{2} \\ &(4) (B \to A) \to (B \to C) && MP(2, 3) \\ &(5) A \to (B \to A) && L_{1} \\ &(6) B \to A && MP(1, 5) \\ &(7) B \to C && MP(4, 6) \\ \end{aligned} (1)A(2)B(AC)(3)(B(AC))((BA)(BC))(4)(BA)(BC)(5)A(BA)(6)BA(7)BCΓΓL2MP(2,3)L1MP(1,5)MP(4,6)
  • 格式说明:左边为证明过程,每一个公式前面有一个序号,右边为标识,表示左边的公式是如何得来的, Γ \Gamma Γ表示从题目中的前提得到的, L 1 L_{1} L1表示从公理一宽容律得到的, L 2 L_{2} L2表示从公理二蕴含分配律得到的, M P ( 1 , 5 ) MP(1,5) MP(1,5)表示根据第一个公式(1)和第五个公式(5)推理出来的。
  • 题意解析:根据题意可知, Γ = { A , B → ( A → C ) , C } \Gamma =\{A, B \to (A \to C),C\} Γ={A,B(AC),C},我们要根据公式 A A A和公式 B → ( A → C ) B \to (A \to C) B(AC)推导出公式 C C C
  • 演绎定理:设 Γ ⊂ F ( S ) , A , B ∈ F ( S ) \Gamma \subset F(S),A,B \in F(S) ΓF(S),A,BF(S),若 Γ ∪ { A } ⊢ B \Gamma \cup \{A\} \vdash B Γ{A}B,则 Γ ⊢ A → B \Gamma \vdash A \to B ΓAB
    • 演绎定理解释为:集合 Γ \Gamma Γ含于集合 F ( S ) F(S) F(S),公式 A , B A,B A,B属于集合 F ( S ) F(S) F(S),如果集合 Γ \Gamma Γ和集合 { A } \{A\} {A}的并集可以推演出公式 B B B,那么集合 Γ \Gamma Γ可以推演出公式 A → B A \to B AB
    • 演绎定理的逆定理也成立:若 Γ ⊢ A → B \Gamma \vdash A \to B ΓAB,则 Γ ∪ { A } ⊢ B \Gamma \cup \{A\} \vdash B Γ{A}B
    • 例题二: ⊢ ¬ A → ( A → B ) \vdash \neg A \to (A \to B) ¬A(AB)
      • 证明:
        由演绎定理可知,我们只需证明
        { ¬ A } ⊢ ( A → B ) \{\neg A\} \vdash (A \to B) {¬A}(AB)
        又由演绎定理可知,我们只需证明
        { ¬ A , A } ⊢ B \{\neg A, A\} \vdash B {¬A,A}B
        ( 1 ) ¬ A Γ ( 2 ) A Γ ( 3 ) ¬ A → ( ¬ B → ¬ A ) L 1 ( 4 ) ¬ B → ¬ A M P ( 1 , 3 ) ( 5 ) ( ¬ B → ¬ A ) → ( A → B ) L 3 ( 6 ) A → B M P ( 4 , 5 ) ( 7 ) B M P ( 2 , 6 ) \begin{aligned} & (1) \neg A && \Gamma \\ & (2) A && \Gamma \\ &(3) \neg A \to (\neg B \to \neg A) \qquad && L_{1} \\ &(4)\neg B \to \neg A && MP(1, 3) \\ &(5) (\neg B \to \neg A) \to (A \to B) && L_{3} \\ &(6) A \to B && MP(4, 5) \\ &(7) B && MP(2, 6) \\ \end{aligned} (1)¬A(2)A(3)¬A(¬B¬A)(4)¬B¬A(5)(¬B¬A)(AB)(6)AB(7)BΓΓL1MP(1,3)L3MP(4,5)MP(2,6)
  • 三段论规则-HS 规则: { A → B , B → C } ⊢ A → C \{A \to B,B \to C\} \vdash A \to C {AB,BC}AC
  • 推论:设 ⊢ A → B ⊢ A \to B AB ⊢ B → C \vdash B \to C BC,则 ⊢ A → C \vdash A \to C AC

可证等价关系

  • A , B ∈ F ( S ) A,B \in F(S) A,BF(S),若 ⊢ A → B \vdash A \to B AB ⊢ B → A \vdash B \to A BA 成立,则称 A A A B B B 可证等价,记作 A ≈ B A \approx B AB
  • 例题三:设 A ∈ F ( S ) A \in F(S) AF(S),则 ¬ ¬ A ≈ A \neg\neg A \approx A ¬¬AA
    • 证明:
      首先证明 { ¬ ¬ A } ⊢ A \{\neg\neg A\} \vdash A {¬¬A}A
      ( 1 ) ¬ ¬ A 假 设 ( 2 ) ¬ ¬ A → ( ¬ ¬ ¬ ¬ A → ¬ ¬ A ) L 1 ( 3 ) ¬ ¬ ¬ ¬ A → ¬ ¬ A M P ( 1 , 2 ) ( 4 ) ( ¬ ¬ ¬ ¬ A → ¬ ¬ A ) → ( ¬ A → ¬ ¬ ¬ A ) L 3 ( 5 ) ¬ A → ¬ ¬ ¬ A M P ( 3.4 ) ( 6 ) ( ¬ A → ¬ ¬ ¬ A ) → ( ¬ ¬ A → A ) ( 7 ) ¬ ¬ A → A M P ( 5.6 ) ( 8 ) A M P ( 1 , 7 ) \begin{aligned} & (1) \neg\neg A && 假设 \\ & (2)\neg\neg A \to (\neg\neg \neg\neg A \to \neg\neg A) && L_{1} \\ & (3) \neg\neg \neg\neg A \to \neg\neg A && MP(1,2) \\ & (4) (\neg\neg \neg\neg A \to \neg\neg A) \to (\neg A \to \neg\neg\neg A) && L_{3} \\ & (5) \neg A \to \neg \neg \neg A && MP(3.4) \\ & (6) (\neg A \to \neg \neg \neg A ) \to (\neg \neg A \to A) && \\ & (7) \neg\neg A \to A && MP(5.6) \\ & (8) A && MP(1,7) \\ \end{aligned} (1)¬¬A(2)¬¬A(¬¬¬¬A¬¬A)(3)¬¬¬¬A¬¬A(4)(¬¬¬¬A¬¬A)(¬A¬¬¬A)(5)¬A¬¬¬A(6)(¬A¬¬¬A)(¬¬AA)(7)¬¬AA(8)AL1MP(1,2)L3MP(3.4)MP(5.6)MP(1,7)
      由此得 { ¬ ¬ A } ⊢ A \{\neg\neg A\} \vdash A {¬¬A}A成立,即 ⊢ ¬ ¬ A → A \vdash \neg \neg A \to A ¬¬AA
      再证明 A ⊢ { ¬ ¬ A } A \vdash \{\neg\neg A\} A{¬¬A}
      ( 1 ) A 假 设 ( 2 ) ¬ ¬ ¬ A → ¬ A 根 据 上 一 个 证 明 , 推 出 ⊢ ¬ ¬ ( ¬ A ) → ( ¬ A ) ( 3 ) ( ¬ ¬ ¬ A → ¬ A ) → ( A → ¬ ¬ A ) L 3 ( 4 ) A → ¬ ¬ A M P ( 2.3 ) ( 5 ) ¬ ¬ A M P ( 1 , 4 ) \begin{aligned} & (1) A && 假设 \\ &(2) \neg\neg\neg A \to \neg A && 根据上一个证明,推出\vdash \neg \neg(\neg A) \to( \neg A ) \\ &(3) (\neg\neg\neg A \to \neg A) \to (A \to \neg\neg A) && L_{3} \\ &(4) A \to \neg\neg A && MP(2.3) \\ &(5) \neg\neg A && MP(1,4) \\ \end{aligned} (1)A(2)¬¬¬A¬A(3)(¬¬¬A¬A)(A¬¬A)(4)A¬¬A(5)¬¬A¬¬(¬A)(¬A)L3MP(2.3)MP(1,4)
      由此得 A ⊢ { ¬ ¬ A } A \vdash \{\neg\neg A\} A{¬¬A}成立,即 ⊢ A → ¬ ¬ A \vdash A \to \neg \neg A A¬¬A
      因此, ¬ ¬ A ≈ A \neg\neg A \approx A ¬¬AA
  • 第一个证明的公式(2)再解释一下:由公理 L 1 : A → ( B → A ) L_{1}:A \to (B \to A) L1:A(BA)可知把公理中的 A A A看作 ¬ ¬ A \neg \neg A ¬¬A,把公理中的 B B B看作 ¬ ¬ ¬ ¬ A \neg \neg \neg \neg A ¬¬¬¬A,此时,公理 L 1 L_{1} L1就可以写作公式 ¬ ¬ A → ( ¬ ¬ ¬ ¬ A → ¬ ¬ A ) \neg\neg A \to (\neg\neg \neg\neg A \to \neg\neg A) ¬¬A(¬¬¬¬A¬¬A),我们便可以直接将此公式作为前提放在推演过程中使用。
  • 第二个证明的公式(2)再解释一下:由第一个证明的结论 ⊢ ¬ ¬ A → A \vdash \neg \neg A \to A ¬¬AA,我们可以知道,当 A ∈ F ( S ) A \in F(S) AF(S)时, ¬ ¬ A → A \neg \neg A \to A ¬¬AA是成立的,那么,对于 ¬ A ∈ F ( S ) \neg A \in F(S) ¬AF(S)时, ¬ ¬ ¬ A → ¬ A \neg\neg\neg A \to \neg A ¬¬¬A¬A也是成立的,因此,此时我们将 ¬ ¬ ¬ A → ¬ A \neg\neg\neg A \to \neg A ¬¬¬A¬A看作是前提在推演中直接使用。
  • A ∈ F ( S ) A \in F(S) AF(S)时, ⊢ A → ¬ ¬ A \vdash A \to \neg \neg A A¬¬A是一个定理,意味着我们以后进行推理,可以直接使用 A → ¬ ¬ A A \to \neg \neg A A¬¬A ¬ ¬ A → A \neg \neg A \to A ¬¬AA两个公式,比如例题四。
  • 例题四:设 A , B ∈ F ( S ) A, B \in F(S) A,BF(S),则 ( A → B ) ≈ ( ¬ B → ¬ A ) (A \to B) \approx (\neg B\to \neg A) (AB)(¬B¬A)
    • 证明:
      L 3 L_{3} L3我们可以得到 ⊢ ( ¬ B → ¬ A ) → ( A → B ) \vdash (\neg B \to \neg A) \to (A \to B) (¬B¬A)(AB),所以我们只需证明 ⊢ ( A → B ) → ( ¬ B → ¬ A ) \vdash (A \to B) \to (\neg B \to \neg A) (AB)(¬B¬A)
      再由演绎定理可知,我们只需证明 { A → B } ⊢ ( ¬ B → ¬ A ) \{A \to B\} \vdash (\neg B \to \neg A) {AB}(¬B¬A)即可
      ( 1 ) A → B 假 设 ( 2 ) ¬ ¬ A → A 例 题 三 已 证 定 理 ( 3 ) ¬ ¬ A → B H S ( 1 , 2 ) ( 4 ) ( B → ¬ ¬ B ) 例 题 三 已 证 定 理 ( 5 ) ¬ ¬ A → ¬ ¬ B H S ( 3 , 4 ) ( 6 ) ( ¬ ¬ A → ¬ ¬ B ) → ( ¬ B → ¬ A ) L 3 ( 7 ) ¬ B → ¬ A M P ( 5.6 ) \begin{aligned} & (1) A \to B && 假设 \\ & (2) \neg \neg A \to A && 例题三已证定理 \\ & (3) \neg \neg A \to B && HS(1,2) \\ & (4) (B \to \neg \neg B) && 例题三已证定理 \\ & (5) \neg\neg A \to \neg \neg B && HS(3,4) \\ & (6) (\neg\neg A \to \neg \neg B)\to (\neg B \to \neg A) && L_{3} \\ & (7) \neg B \to \neg A && MP(5.6) \\ \end{aligned} (1)AB(2)¬¬AA(3)¬¬AB(4)(B¬¬B)(5)¬¬A¬¬B(6)(¬¬A¬¬B)(¬B¬A)(7)¬B¬AHS1,2HS3,4L3MP(5.6)
      所以, { A → B } ⊢ ( ¬ B → ¬ A ) \{A \to B\} \vdash (\neg B \to \neg A) {AB}(¬B¬A),即 ⊢ ( A → B ) → ( ¬ B → ¬ A ) \vdash (A \to B) \to (\neg B \to \neg A) (AB)(¬B¬A)成立
      因此, ( A → B ) ≈ ( ¬ B → ¬ A ) (A \to B) \approx (\neg B\to \neg A) (AB)(¬B¬A)成立

H S HS HS是前面讲到的三段论规则

语义蕴含 ⊨ \models

  • 定义:设符号 Γ ⊨ A \Gamma \models A ΓA表示: ∀ B ∈ Γ \forall B \in \Gamma BΓ,和解释 I I I,若 I ⊨ B I \models B IB,则 I ⊨ A I \models A IA。此时称 Γ \Gamma Γ语义蕴含 A A A I I I Γ \Gamma Γ的模型。
  • 通俗点解释:
    • 格式: φ 1 , φ 2 , . . . , φ n ⊨ ψ \varphi_1,\varphi_2,...,\varphi_n \models \psi φ1,φ2,...,φnψ
    • 解释:当 φ 1 , φ 2 , . . . , φ n \varphi_1,\varphi_2,...,\varphi_n φ1,φ2,...,φn蕴含 ψ \psi ψ时,表明 φ 1 , φ 2 , . . . , φ n ⊨ ψ \varphi_1,\varphi_2,...,\varphi_n \models \psi φ1,φ2,...,φnψ是有效的,也表示当 φ 1 , φ 2 , . . . , φ n \varphi_1,\varphi_2,...,\varphi_n φ1,φ2,...,φn t r u e true true时, ψ \psi ψ一定为 t r u e true true
  • 范例: p ∨ q , q , r ⊨ p p \vee q,q,r \models p pq,q,rp具有有效性
    • 含义:当 p ∧ q p \wedge q pq t r u e true true q q q t r u e true true r r r t r u e true true时, p p p一定为 t r u e true true. 所以 p ∧ q , q , r p \wedge q,q,r pq,q,r蕴含 p p p

可靠性与完备性

  • 可靠性
    • 定义: ∀ A ∈ F ( S ) \forall A \in F(S) AF(S),若 ⊢ A 则 ⊨ A \vdash A 则 \models A AA
    • 通俗点解释:令 φ 1 , φ 2 , . . . , φ n \varphi_1,\varphi_2,...,\varphi_n φ1,φ2,...,φn ψ \psi ψ为命题逻辑中的公式,如果 φ 1 , φ 2 , . . . , φ n ⊢ ψ \varphi_1,\varphi_2,...,\varphi_n \vdash \psi φ1,φ2,...,φnψ是有效的, 那么 φ 1 , φ 2 , . . . , φ n ⊨ ψ \varphi_1,\varphi_2,...,\varphi_n \models \psi φ1,φ2,...,φnψ是有效的。
  • 完备性
    • 定义: ∀ A ∈ F ( S ) \forall A \in F(S) AF(S),若 ⊨ A 则 ⊢ A \models A 则 \vdash A AA
    • 通俗点解释:令 φ 1 , φ 2 , . . . , φ n \varphi_1,\varphi_2,...,\varphi_n φ1,φ2,...,φn ψ \psi ψ为命题逻辑中的公式,如果 φ 1 , φ 2 , . . . , φ n ⊨ ψ \varphi_1,\varphi_2,...,\varphi_n \models \psi φ1,φ2,...,φnψ是有效的, 那么 φ 1 , φ 2 , . . . , φ n ⊢ ψ \varphi_1,\varphi_2,...,\varphi_n \vdash \psi φ1,φ2,...,φnψ是有效的。
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

print_Hyon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值