命题逻辑<4>——命题演算形式系统PC

§ 4 \S 4 §4 命题演算形式系统 P C \mathsf{PC} PC

形式系统的定义

定义4.1 形式系统

若一个符号系统 I I I由以下4部分组成:

  1. 字母表 Σ ≠ ∅ \Sigma \ne \varnothing Σ=
  2. Σ ≠ ∅ \Sigma \ne \varnothing Σ=中符号构造的合式公式集 E ( I ) E\left ( I \right ) E(I)
  3. 公理集 E x ( I ) ⊂ E ( I ) E_{x}\left ( I \right ) \subset E\left ( I \right ) Ex(I)E(I)
  4. 推理规则集 R ( I ) R\left ( I \right ) R(I)

则称符合条件的符号系统为形式系统,系统内的概念和命题高度符号化,推理过程同构于对符号串进行变形的过程。形式系统 I I I记为四元组 ⟨ Σ , E ( I ) , E x ( I ) , R ( I ) ⟩ \left \langle \Sigma ,E\left ( I \right ),E_{x}\left ( I \right ),R\left ( I \right ) \right \rangle Σ,E(I),Ex(I),R(I), ⟨ Σ , E ( I ) ⟩ \left \langle \Sigma,E\left ( I \right ) \right \rangle Σ,E(I)称为形式语言系统, ⟨ E x ( I ) , R ( I ) ⟩ \left \langle E_{x}\left ( I \right ),R\left ( I \right ) \right \rangle Ex(I),R(I)称为形式演算系统。
公理指形式系统中一些被定义为形式系统基础的重言式,推理规则指保证从公理或已知的重言式出发,能推导出新的重言式的规则。

定义4.2 证明 演绎

公式序列 ⟨ A 1 , A 2 , ⋯   , A i , ⋯   , A m ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{i},\cdots ,A_{m} \right \rangle A1,A2,,Ai,,Am称为公式 A m A_{m} Am的一个证明,若其中所有的 A i ( i ∈ N + , 1 ≤ i ≤ n ) A_{i}(i\in \mathbb{N^{+} },1\le i\le n) Ai(iN+,1in)满足以下任何条件之一:

  1. A i A_{i} Ai是公理;
  2. A i A_{i} Ai是公式序列 ⟨ A j 1 , A j 2 , ⋯   , A j k ⟩ ( j 1 ≤ j 2 ≤ ⋯ ≤ j k < i ) \left \langle A_{j_{1}}, A_{j_{2}},\cdots ,A_{j_{k}} \right \rangle(j_{1} \le j_{2} \le \cdots \le j_{k} < i) Aj1,Aj2,,Ajk(j1j2jk<i)根据推理规则导出的重言式。

则称 A m A_{m} Am为定理,记为 ⊢ S A m \vdash ^{S} A_{m} SAm,简写为 ⊢ A m \vdash A_{m} Am, S S S代表形式系统的名称。
若存在公式集合 Γ \Gamma Γ,使得公式序列 ⟨ A 1 , A 2 , ⋯   , A i , ⋯   , A m ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{i},\cdots ,A_{m} \right \rangle A1,A2,,Ai,,Am成为公式 A m A_{m} Am的一个演绎,且其中所有的 A i ( i ∈ N + , 1 ≤ i ≤ n ) A_{i}(i\in \mathbb{N^{+} },1\le i\le n) Ai(iN+,1in)满足以下任何条件之一:

  1. A i ∈ Γ A_{i} \in \Gamma AiΓ;
  2. A i A_{i} Ai是公理;
  3. A i A_{i} Ai是公式序列 ⟨ A j 1 , A j 2 , ⋯   , A j k ⟩ ( j 1 ≤ j 2 ≤ ⋯ ≤ j k < i ) \left \langle A_{j_{1}}, A_{j_{2}},\cdots ,A_{j_{k}} \right \rangle(j_{1} \le j_{2} \le \cdots \le j_{k} < i) Aj1,Aj2,,Ajk(j1j2jk<i)根据推理规则导出的重言式。

则称 A m A_{m} Am Γ \Gamma Γ的逻辑结果,记为 Γ ⊢ S A m \Gamma \vdash ^{S} A_{m} ΓSAm,简写为 Γ ⊢ A m \Gamma \vdash A_{m} ΓAm, S S S代表形式系统的名称, Γ \Gamma Γ Γ \Gamma Γ的成员称为 A m A_{m} Am的前提,证明是 Γ = ∅ \Gamma =\varnothing Γ=时演绎的退化形式。
关于演绎,可以用福尔摩斯调查案件的实例说明,福尔摩斯从苏格兰场获得的一手资料,如尸检报告,案发地点,死者身份,案发现场等视为公理,福尔摩斯所处时代的科学理论视为推理规则,而福尔摩斯通过检查现场痕迹,走访案发地点,询问证人,分析嫌疑,求助公务部门等一些活动获得的新证据视为 Γ \Gamma Γ,探案过程不只需要公理和推理规则,还需要新的外部证据,才能完成破获凶手的演绎。

定义4.3 自然推理形式系统 P \mathsf{P} P

若形式系统从任意给定前提出发,有限步内引用推理规则得出推理结论(正确性依赖于前提),称为自然推理形式系统 P \mathsf{P} P

定义4.4 理论 扩充

形式系统 S S S的理论指集合 T h ( S ) = { A ∣ ⊢ S A } Th\left ( \mathsf{S} \right )=\left \{ A\mid \vdash _{\mathsf{S} } A \right \} Th(S)={ASA},形式系统 S S S基于任意的公式集合 Γ \Gamma Γ的扩充指集合 T h ( S ∪ Γ ) = { A ∣ Γ ⊢ S A } Th\left ( \mathsf{S} \cup \Gamma \right )=\left \{ A\mid \Gamma \vdash _{\mathsf{S} } A \right \} Th(SΓ)={AΓSA}

形式系统的性质

定义4.5 合理性

对形式系统中任意的公式集合 Γ \Gamma Γ和公式 A A A,若 Γ ⊢ A \Gamma \vdash A ΓA,则 Γ ⇒ A \Gamma \Rightarrow A ΓA,特别地, Γ = ∅ \Gamma =\varnothing Γ=时,若 ⊢ A \vdash A A,则 ⇒ A \Rightarrow A A,则称形式系统具有合理性。

定义4.6 一致性

若形式系统中不存在公式 A A A,使得 Γ ⊢ A \Gamma \vdash A ΓA Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A同时成立,则称形式系统具有一致性。

定义4.7 完备性

对形式系统中任意的公式集合 Γ \Gamma Γ和公式 A A A,若 Γ ⇒ A \Gamma \Rightarrow A ΓA,则 Γ ⊢ A \Gamma \vdash A ΓA,特别地, Γ = ∅ \Gamma =\varnothing Γ=时,若 ⇒ A \Rightarrow A A,则 ⊢ A \vdash A A,则称形式系统具有完备性。

定义4.8 紧致性

对于形式系统的任意的公式集合 Γ \Gamma Γ,若 Γ \Gamma Γ的任意子集可满足,则 Γ \Gamma Γ也是可满足的,则称形式系统具有紧致性。

定义4.9 完全性

对于形式系统的任意的公式集合 Γ \Gamma Γ,若对于任意公式 A A A, Γ ⊢ A \Gamma \vdash A ΓA Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A必有一个成立,则称 Γ \Gamma Γ是一个完全公式集。

命题演算形式系统 P C \mathsf{PC} PC

定义4.9 命题演算形式系统 P C \mathsf{PC} PC

若一个形式系统的字母表 Σ \Sigma Σ由逻辑联结词 { ¬ , → } \left \{ \neg ,\to \right \} {¬,},逗号,括号和命题变元组成,且具有以下公理模式:

  1. A 1. A → ( B → A ) A1.A \to \left ( B\to A \right ) A1.A(BA)
  2. A 2. ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) A2.\left ( A\to \left ( B\to C \right ) \right ) \to \left ( \left ( A\to B \right ) \to \left ( A\to C \right ) \right ) A2.(A(BC))((AB)(AC))
  3. A 3. ( ¬ A → ¬ B ) → ( B → A ) A3.\left ( \neg A\to \neg B \right ) \to \left ( B\to A \right ) A3.(¬A¬B)(BA)

以及推理规则:

  1. 分离规则 r m p . A , A → B / B r_{mp}.A,A\to B/B rmp.A,AB/B

则称为命题演算形式系统 P C \mathsf{PC} PC

定理4.1 演绎定理

充分性
已知存在以 Γ \Gamma Γ为前提的演绎过程 ⟨ A 1 , A 2 , ⋯   , A i , ⋯   , A → B ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{i},\cdots ,A \to B \right \rangle A1,A2,,Ai,,AB,在序列末尾加入新公式 A A A, B B B,利用分离规则得到以 Γ ∪ { A } \Gamma\cup \left \{ A \right \} Γ{A}(简写为 Γ ; A \Gamma ;A Γ;A)为前提的 B B B的演绎过程 ⟨ A 1 , A 2 , ⋯   , A i , ⋯   , A , B ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{i},\cdots ,A, B \right \rangle A1,A2,,Ai,,A,B
必要性
结构归纳法:对演绎序列的长度 m m m进行归纳:
n = 1 n=1 n=1时,以 Γ ∪ { A } \Gamma\cup \left \{ A \right \} Γ{A}为前提的演绎序列中只有一个公式 B B B,则有以下三种对 B B B的分类:

  1. B B B是公理
  2. B B B属于假设 Γ \Gamma Γ
  3. B = A B = A B=A

B B B是公理或 B B B属于假设 Γ \Gamma Γ时,可通过公理1: A → ( A → B ) A\to \left ( A\to B \right ) A(AB)和分离规则 A , A → ( A → B ) / A → B A,A\to \left ( A\to B \right )/A\to B A,A(AB)/AB得到 A → B A\to B AB;
A = A A = A A=A时,将问题转化为 Γ ⊢ A → A \Gamma \vdash A\to A ΓAA,即 ⊢ A → A \vdash A\to A AA
A → A A\to A AA的构造方式如下:
( 1 ) A → ( ( A → A ) → A ) A 1 ( 2 ) ( A → ( ( A → A ) → A ) ) → ( ( A → ( A → A ) ) → ( A → A ) ) A 2 ( 3 ) ( A → ( A → A ) ) → ( A → A ) r m p ( 1 ) ( 2 ) ( 4 ) ( A → ( A → A ) ) A 1 ( 5 ) A → A r m p ( 3 ) ( 4 ) \begin{array}{l} (1) & A \to \left ( \left ( A\to A \right )\to A \right ) & A1 \\ (2) & \left ( A\to \left ( \left ( A\to A \right )\to A \right ) \right ) \to \left ( \left ( A\to \left ( A\to A \right ) \right ) \to \left ( A\to A \right ) \right ) & A2 \\ (3) & \left ( A\to \left ( A\to A \right ) \right ) \to \left ( A\to A \right ) & r_{mp}(1)(2) \\ (4) & \left ( A\to \left ( A\to A \right ) \right ) & A1 \\ (5) & A\to A & r_{mp}(3)(4) \end{array} (1)(2)(3)(4)(5)A((AA)A)(A((AA)A))((A(AA))(AA))(A(AA))(AA)(A(AA))AAA1A2rmp(1)(2)A1rmp(3)(4)
设序列长度小于 n n n时均成立, m = n m=n m=n时,则有以下四种对 B B B的分类:

  1. B B B是公理
  2. B B B属于假设 Γ \Gamma Γ
  3. B = A i B = A_{i} B=Ai
  4. B B B能从 A j A_{j} Aj A k A_{k} Ak通过分离规则导出

B B B是公理或 B B B属于假设 Γ \Gamma Γ时,可通过公理1: A → ( A → B ) A\to \left ( A\to B \right ) A(AB)和分离规则 A , A → ( B → A ) / A → B A,A\to \left ( B\to A \right )/A\to B A,A(BA)/AB得到 A → B A\to B AB;
B = A i B = A_{i} B=Ai时, A i A_{i} Ai的证明序列长度小于 k k k,由归纳假设, Γ ∪ { A } ⊢ P C A i ⇒ Γ ⊢ P C A → A i \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{PC} } A_{i}\Rightarrow \Gamma \vdash _{\mathsf{PC} } A\to A_{i} Γ{A}PCAiΓPCAAi;
B B B能从 A j A_{j} Aj A k A_{k} Ak通过分离规则导出时,不妨设 A k = A j → B A_{k} = A_{j}\to B Ak=AjB,已知 A j A_{j} Aj, A k A_{k} Ak的证明序列长度小于 n n n,由归纳假设, Γ ∪ { A } ⊢ P C A j ⇒ Γ ⊢ P C A → A j \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{PC} } A_{j}\Rightarrow \Gamma \vdash _{\mathsf{PC} } A\to A_{j} Γ{A}PCAjΓPCAAj, Γ ∪ { A } ⊢ P C A j → A ⇒ Γ ⊢ P C A → ( A j → B ) \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{PC} } A_{j}\to A \Rightarrow \Gamma \vdash _{\mathsf{PC} } A\to \left ( A_{j}\to B \right ) Γ{A}PCAjAΓPCA(AjB);
引用公理2: ( A → ( A j → B ) ) → ( ( A → A j ) → ( A → B ) ) \left ( A\to \left ( A_{j} \to B \right ) \right ) \to \left ( \left ( A\to A_{j} \right ) \to \left ( A\to B \right ) \right ) (A(AjB))((AAj)(AB))并连续运用分离规则,得到一个以 Γ \Gamma Γ为前提对 A → B A\to B AB的演绎过程 Γ ⊢ A → B \Gamma \vdash A\to B ΓAB

定理4.2 P C \mathsf{PC} PC的合理性

P C \mathsf{PC} PC中任意的公式集合 Γ \Gamma Γ和公式 A A A,若 Γ ⊢ A \Gamma \vdash A ΓA,则 Γ ⇒ A \Gamma \Rightarrow A ΓA,特别地, Γ = ∅ \Gamma =\varnothing Γ=时,若 ⊢ A \vdash A A,则 ⇒ A \Rightarrow A A,则称形式系统具有合理性。
结构归纳法,对演绎序列的长度 m m m进行归纳,设指派 α \alpha α Γ \Gamma Γ中所有公式的成真指派,设 Γ ⊢ A \Gamma \vdash A ΓA的演绎序列为 ⟨ A 1 , A 2 , ⋯   , A m = A ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{m}=A \right \rangle A1,A2,,Am=A,
m = 1 m=1 m=1时,若 A A A为公理,根据公理的永真性, ⇒ A \Rightarrow A A;
A ∈ Γ A\in \Gamma AΓ,则 Γ ⇒ A \Gamma \Rightarrow A ΓA;
以上情况均有 α ( A ) = 1 \alpha \left ( A \right )=1 α(A)=1;
m < k m<k m<k时假设都成立,当 m = k m=k m=k时,
A k = A A_{k} =A Ak=A,若 A k A_{k} Ak为公理或 A ∈ Γ A\in \Gamma AΓ,则 ⇒ A \Rightarrow A A, α ( A ) = 1 \alpha \left ( A \right ) =1 α(A)=1;
A k = A i ( i ∈ N + , i < k ) A_{k} =A_{i}\left ( i\in \mathbb{N}^{+},i< k \right ) Ak=Ai(iN+,i<k),则根据公理的永真性和归纳假设, α ( A ) = α ( A i ) = 1 \alpha \left ( A \right )= \alpha \left ( A_{i} \right ) =1 α(A)=α(Ai)=1;
A k = A A_{k} =A Ak=A可以通过 A i A_{i} Ai, A j ( i , j ∈ N + , i , j < k ) A_{j}\left ( i,j\in \mathbb{N}^{+},i,j< k \right ) Aj(i,jN+,i,j<k)通过分离规则导出,由归纳假设 α ( A i ) = α ( A j ) = 1 \alpha \left ( A_{i} \right ) =\alpha \left ( A_{j} \right ) =1 α(Ai)=α(Aj)=1,由分离规则的保真性, α ( A ) = 1 \alpha \left ( A \right ) =1 α(A)=1

定理4.3 P C \mathsf{PC} PC的一致性

P C \mathsf{PC} PC中不存在公式 A A A,使得 Γ ⊢ A \Gamma \vdash A ΓA Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A同时成立,则称形式系统具有一致性。
P C \mathsf{PC} PC中,对于同一公式 A A A,有 ⊢ A \vdash A A, ⊢ ¬ A \vdash \neg A ¬A能同时成立,引用定理4.2,有 ⇒ A \Rightarrow A A, ⇒ ¬ A \Rightarrow \neg A ¬A能同时成立,违反矛盾律。

引理4.1

Γ \Gamma Γ是一致的, Γ ⊢ A \Gamma \vdash A ΓA,则 Γ ∪ { A } \Gamma \cup \left \{ A \right \} Γ{A}也是一致的。
Γ ∪ { A } \Gamma \cup \left \{ A \right \} Γ{A}不是一致的,存在公式 A A A使得 Γ ∪ { A } ⊢ B \Gamma \cup \left \{ A \right \}\vdash B Γ{A}B Γ ∪ { A } ⊢ ¬ B \Gamma \cup \left \{ A \right \}\vdash \neg B Γ{A}¬B,可通过如下演绎过程:
( 1 ) A → ¬ B 演绎定理 ( 2 ) ( A → ¬ B ) → ( B → ¬ A ) 定理 3 ( 3 ) B → ¬ A r m p ( 1 ) ( 2 ) ( 4 ) B 假设 ( 5 ) ¬ A r m p ( 3 ) ( 4 ) \begin{array}{l} (1) & A\to \neg B & 演绎定理 \\ (2) & \left ( A\to \neg B \right ) \to \left (B\to \neg A \right ) & 定理3 \\ (3) & B\to \neg A & r_{mp} (1)(2) \\ (4) & B &假设 \\ (5) & \neg A & r_{mp} (3)(4) \end{array} (1)(2)(3)(4)(5)A¬B(A¬B)(B¬A)B¬AB¬A演绎定理定理3rmp(1)(2)假设rmp(3)(4)
构造 Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A,即 Γ ⊬ A \Gamma \not \vdash A ΓA,从而导出与 Γ ⊢ A \Gamma \vdash A ΓA矛盾的逻辑结果。

引理4.2

Γ \Gamma Γ是一致的, Γ ⊬ A \Gamma \not \vdash A ΓA,则 Γ ∪ { ¬ A } \Gamma \cup \left \{ \neg A \right \} Γ{¬A}也是一致的。
Γ ∪ { ¬ A } \Gamma \cup \left \{ \neg A \right \} Γ{¬A}不是一致的,存在公式 A A A使得 Γ ∪ { ¬ A } ⊢ B \Gamma \cup \left \{ \neg A \right \}\vdash B Γ{¬A}B Γ ∪ { ¬ A } ⊢ ¬ B \Gamma \cup \left \{ \neg A \right \}\vdash \neg B Γ{¬A}¬B,可通过如下演绎过程:
( 1 ) ¬ A → ¬ B 演绎定理 ( 2 ) ( ¬ A → ¬ B ) → ( B → A ) 定理 3 ( 3 ) B → A r m p ( 1 ) ( 2 ) ( 4 ) B 假设 ( 5 ) A r m p ( 3 ) ( 4 ) \begin{array}{l} (1) & \neg A\to \neg B & 演绎定理 \\ (2) & \left ( \neg A\to \neg B \right ) \to \left ( B\to A \right ) & 定理3 \\ (3) & B\to A & r_{mp} (1)(2) \\ (4) & B&假设 \\ (5) & A & r_{mp} (3)(4) \end{array} (1)(2)(3)(4)(5)¬A¬B(¬A¬B)(BA)BABA演绎定理定理3rmp(1)(2)假设rmp(3)(4)
构造 Γ ⊢ A \Gamma \vdash A ΓA,从而导出与 Γ ⊬ A \Gamma \not \vdash A ΓA矛盾的逻辑结果。

引理4.3

Γ \Gamma Γ P C \mathsf{PC} PC的一致公式集,则存在公式集 Δ \Delta Δ使得 Γ ⊆ Δ \Gamma \subseteq \Delta ΓΔ Δ \Delta Δ同时满足一致性,完全性。
对于 P C \mathsf{PC} PC中的公式 A 0 , A 1 , … A n … A_{0},A_{1},\dots A_{n} \dots A0,A1,An,可构造 Δ \Delta Δ:

  1. Δ 0 = Γ \Delta _{0}=\Gamma Δ0=Γ;
  2. Δ n ⊢ A n \Delta _{n} \vdash A_{n} ΔnAn,则 Δ n + 1 = Δ n ∪ { A n } \Delta _{n+1} = \Delta _{n} \cup \left \{ A_{n} \right \} Δn+1=Δn{An};
  3. Δ n ⊬ A n \Delta _{n} \not \vdash A_{n} ΔnAn,则 Δ n + 1 = Δ n ∪ { ¬ A n } \Delta _{n+1} = \Delta _{n} \cup \left \{\neg A_{n} \right \} Δn+1=Δn{¬An};
  4. Δ = ⋃ n = 0 + ∞ Δ n \Delta =\bigcup_{n=0}^{+ \infty }\Delta _{n} Δ=n=0+Δn

(1) Δ \Delta Δ的完全性
P C \mathsf{PC} PC中任意公式为 A j A_{j} Aj,若 Δ j ⊢ A j \Delta _{j} \vdash A_{j} ΔjAj,则 A j ∈ Δ j + 1 = Δ j ∪ { A j } A_{j} \in \Delta _{j+1} = \Delta _{j} \cup \left \{ A_{j} \right \} AjΔj+1=Δj{Aj},根据 Δ \Delta Δ的递归定义, A j ∈ Δ j + 1 ⊆ Δ A_{j} \in \Delta _{j+1} \subseteq \Delta AjΔj+1Δ,即 Δ ⊢ A j \Delta \vdash A_{j} ΔAj
Δ j ⊬ A j \Delta _{j} \not\vdash A_{j} ΔjAj,则 ¬ A j ∈ Δ j + 1 = Δ j ∪ { ¬ A j } \neg A_{j} \in \Delta _{j+1} = \Delta _{j} \cup \left \{ \neg A_{j} \right \} ¬AjΔj+1=Δj{¬Aj},根据 Δ \Delta Δ的递归定义, ¬ A j ∈ Δ j + 1 ⊆ Δ \neg A_{j} \in \Delta _{j+1} \subseteq \Delta ¬AjΔj+1Δ,即 Δ ⊢ ¬ A j \Delta \vdash \neg A_{j} Δ¬Aj
(2) Δ n \Delta _{n} Δn的一致性
第一数学归纳法, n = 0 n =0 n=0 Δ 0 = Γ \Delta _{0}=\Gamma Δ0=Γ,由假设 Δ 0 = Γ \Delta _{0}=\Gamma Δ0=Γ具有一致性;设 n < k n <k n<k Δ n \Delta _{n} Δn都一致,对于 n = k n=k n=k的情形,若 Δ k − 1 ⊢ A k − 1 \Delta _{k-1} \vdash A_{k-1} Δk1Ak1,则 Δ k = Δ k − 1 ∪ { A k − 1 } \Delta _{k}= \Delta _{k-1} \cup \left \{ A_{k-1} \right \} Δk=Δk1{Ak1},引用引理4.1, Δ k \Delta _{k} Δk也一致。若 Δ k − 1 ⊬ A k − 1 \Delta _{k-1} \not \vdash A_{k-1} Δk1Ak1,则 Δ k = Δ k − 1 ∪ { ¬ A k − 1 } \Delta _{k}= \Delta _{k-1} \cup \left \{ \neg A_{k-1} \right \} Δk=Δk1{¬Ak1},引用引理4.2, Δ k \Delta _{k} Δk也一致。
(3) Δ \Delta Δ的一致性
设存在公式 A A A使得 Δ ⊢ ¬ A \Delta \vdash \neg A Δ¬A, Δ ⊢ A \Delta \vdash A ΔA,则存在正整数 i i i, j j j使得 Δ i ⊢ A \Delta _{i} \vdash A ΔiA, Δ j ⊢ ¬ A \Delta _{j} \vdash \neg A Δj¬A,取 n = max ⁡ { i , j } n=\max \left \{ i,j \right \} n=max{i,j},有 Δ n ⊢ A \Delta _{n} \vdash A ΔnA, Δ n ⊢ ¬ A \Delta _{n} \vdash \neg A Δn¬A,这与(2)相矛盾,所以 Δ \Delta Δ也一致。

引理4.4

A ∈ Δ ⇔ Δ ⊢ A A\in \Delta \Leftrightarrow \Delta \vdash A AΔΔA
必要性显然,下证充分性:
Δ ⊢ A \Delta \vdash A ΔA,并且设 Δ ⊢ A \Delta \vdash A ΔA的演绎序列为 ⟨ A 1 , A 2 , ⋯   , A m = A ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{m}=A \right \rangle A1,A2,,Am=A,
第一数学归纳法,对演绎序列长度 m m m进行归纳,
m = 1 m=1 m=1时, A ∈ Δ A\in \Delta AΔ A A A为公理,若是后者,设枚举 A A A时编号为 l l l,则 A ∈ Δ l ⊆ Δ A\in \Delta _{l} \subseteq \Delta AΔlΔ,从而 A ∈ Δ A\in \Delta AΔ;
m < k m<k m<k时假设都成立,当 m = k m=k m=k时,
A k = A A_{k} =A Ak=A,若 A k A_{k} Ak为公理,则依照 m = 1 m=1 m=1时的结论, A ∈ Δ A\in \Delta AΔ;
A k = A A_{k} =A Ak=A可以通过 A i A_{i} Ai, A j = A i → A k ( i , j ∈ N + , i , j < k ) A_{j}=A_{i} \to A_{k}\left ( i,j\in \mathbb{N}^{+},i,j< k \right ) Aj=AiAk(i,jN+,i,j<k)通过分离规则导出,由归纳假设, A i , A j ∈ Δ A_{i},A_{j}\in \Delta Ai,AjΔ,存在正整数 n 1 n_{1} n1, n 2 n_{2} n2,使得 A i ∈ Δ n 1 A_{i}\in \Delta _{n_{1} } AiΔn1, A j ∈ Δ n 2 A_{j}\in \Delta _{n_{2} } AjΔn2,令 n = max ⁡ { n 1 , n 2 } n=\max \left \{ n_{1},n_{2} \right \} n=max{n1,n2},则有 A i A_{i} Ai, A j ∈ Δ n A_{j}\in \Delta_{n } AjΔn, Δ n ⊢ A k \Delta _{n}\vdash A_{k} ΔnAk, A k ∈ Δ n + 1 ⊆ Δ A_{k}\in \Delta _{n+1}\subseteq \Delta AkΔn+1Δ,即 A k = A ∈ Δ A_{k} =A \in \Delta Ak=AΔ

引理4.5

Γ \Gamma Γ P C \mathsf{PC} PC中的一致公式集,则存在指派 π \pi π使得 Γ \Gamma Γ中每个公式为真。
根据引理4.3,存在公式集 Δ \Delta Δ,使得 Γ ⊆ Δ \Gamma \subseteq \Delta ΓΔ Δ \Delta Δ同时满足一致性,完全性。
取任意公式 A A A,根据引理4.4, A ∈ Δ A\in \Delta AΔ等价于 Δ ⊢ A \Delta \vdash A ΔA,
构造映射 π ˉ \bar{\pi } πˉ:
π ˉ : F o r m ( p ) ⟶ { 0 , 1 } A ⟼ π ˉ ( A ) \begin{matrix} \bar{\pi } : & \mathsf{Form\left ( p \right ) } & \longrightarrow & \left \{ 0,1 \right \} \\ & A & \longmapsto & \bar{\pi } \left ( A \right ) \end{matrix} πˉForm(p)A{0,1}πˉ(A)
具体功能如下:
π ˉ ( A ) = { 0 A ∈ Δ 1 A ∉ Δ \bar{\pi } \left ( A \right ) =\left\{\begin{matrix} 0 & A\in \Delta \\ 1 & A\notin \Delta \end{matrix}\right. πˉ(A)={01AΔA/Δ
(1)与 P C \mathsf{PC} PC中的连接词的复合运算
π ˉ ( ¬ A ) = 1 − π ˉ ( A ) = { 1 A ∈ Δ 0 A ∉ Δ \bar{\pi } \left (\neg A \right ) \\ =1- \bar{\pi } \left ( A \right ) \\ =\left\{\begin{matrix} 1 & A\in \Delta \\ 0 & A\notin \Delta \end{matrix}\right. πˉ(¬A)=1πˉ(A)={10AΔA/Δ
π ˉ ( A → B ) = ( 1 − π ˉ ( A ) ) + π ˉ ( B ) − ( 1 − π ˉ ( A ) ) ⋅ π ˉ ( B ) = 1 − π ˉ ( A ) + π ˉ ( A   ) ⋅ π ˉ ( B ) = { 1 A ∉ Δ , B ∉ Δ 1 A ∉ Δ , B ∈ Δ 0 A ∈ Δ , B ∉ Δ 1 A ∈ Δ , B ∈ Δ \bar{\pi } \left ( A\to B \right ) \\ = \left ( 1- \bar{\pi } \left ( A \right ) \right ) +\bar{\pi } \left ( B \right )-\left ( 1- \bar{\pi } \left ( A \right ) \right )\cdot \bar{\pi } \left ( B \right ) \\ =1- \bar{\pi } \left ( A \right )+ \bar{\pi } \left ( A \ \right )\cdot \bar{\pi } \left ( B \right ) \\ =\left\{\begin{matrix} 1 & A\notin \Delta ,B\notin \Delta \\ 1 & A\notin \Delta ,B\in \Delta \\ 0 & A\in \Delta ,B\notin \Delta \\ 1 & A\in \Delta ,B\in \Delta \\ \end{matrix}\right. πˉ(AB)=(1πˉ(A))+πˉ(B)(1πˉ(A))πˉ(B)=1πˉ(A)+πˉ(A )πˉ(B)= 1101A/Δ,B/ΔA/Δ,BΔAΔ,B/ΔAΔ,BΔ
(2)映射的性质
Δ \Delta Δ的完全性,对于每个公式 A A A, Δ ⊢ A \Delta \vdash A ΔA Δ ⊢ ¬ A ( Δ ⊬ A ) \Delta \vdash \neg A(\Delta \not \vdash A) Δ¬A(ΔA)必有一个成立,根据引理4.4, A ∈ Δ A \in \Delta AΔ ¬ A ∈ Δ \neg A \in \Delta ¬AΔ必有一个成立;
又由 Δ \Delta Δ的一致性,对于每个公式 A A A, Δ ⊢ A \Delta \vdash A ΔA Δ ⊢ ¬ A ( Δ ⊬ A ) \Delta \vdash \neg A(\Delta \not \vdash A) Δ¬A(ΔA)不能同时成立,根据引理4.4, A ∈ Δ A \in \Delta AΔ ¬ A ∈ Δ \neg A \in \Delta ¬AΔ不能同时成立;
综上所述,原象 A A A映射后只有唯一的象 π ˉ ( A ) ∈ { 0 , 1 } \bar{\pi } \left ( A \right ) \in \left \{ 0,1 \right \} πˉ(A){0,1},所以 π ˉ \bar{\pi } πˉ是一个映射。
(3)映射的限制
π ˉ \bar{\pi } πˉ的定义域限制在 A t o m ( p ) \mathsf{Atom\left ( p \right ) } Atom(p)上,构造限制映射 π = π ˉ ∣ A t o m ( p ) \pi =\bar{\pi} \mid _{\mathsf{Atom\left ( p \right ) }} π=πˉAtom(p),此时 π \pi π只作用于所有原子命题上, π \pi π对公式 A A A中的所有命题变元确定一个真值,此时 π \pi π就是对公式 A A A中的所有命题变元赋值,且 π ˉ ( A ) = π ( A ) \bar{\pi } \left ( A \right ) =\pi \left ( A \right ) πˉ(A)=π(A),若 A ∈ Γ A\in \Gamma AΓ,则 A ∈ Δ A\in \Delta AΔ, π ( A ) = π ˉ ( A ) = 1 \pi \left ( A \right ) =\bar{\pi } \left ( A \right )=1 π(A)=πˉ(A)=1

定理4.4 P C \mathsf{PC} PC的完备性

P C \mathsf{PC} PC中任意的公式集合 Γ \Gamma Γ和公式 A A A,若 Γ ⇒ A \Gamma \Rightarrow A ΓA,则 Γ ⊢ A \Gamma \vdash A ΓA,特别地, Γ = ∅ \Gamma =\varnothing Γ=时,若 ⇒ A \Rightarrow A A,则 ⊢ A \vdash A A,则称形式系统具有完备性。
(1) Γ \Gamma Γ不一致
即存在公式 A A A,使得 Γ ⊢ A \Gamma \vdash A ΓA Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A同时成立,对于任意公式 B B B,有如下构造过程:
( 1 ) ¬ A → ( ¬ B → ¬ A ) A 1 ( 2 ) ¬ B → ¬ A r m p ( 1 ) ( 3 ) ( ¬ B → ¬ A ) → ( A → B ) A 3 ( 4 ) A → B r m p ( 2 ) ( 3 ) ( 5 ) ( A → B ) → ( ¬ A → ( A → B ) ) A 1 ( 6 ) ¬ A → ( A → B ) r m p ( 4 ) ( 5 ) ( 7 ) A → B r m p ( 6 ) ( 8 ) B r m p ( 7 ) \begin{array}{l} (1) & \neg A \to \left ( \neg B\to \neg A \right ) & A1\\ (2) & \neg B\to \neg A & r_{mp}(1)\\ (3) & \left (\neg B\to \neg A \right ) \to \left ( A\to B \right ) & A3\\ (4) & A\to B & r_{mp}(2)(3) \\ (5) & \left ( A\to B \right ) \to \left ( \neg A \to \left ( A\to B \right ) \right ) & A1 \\ (6) & \neg A \to \left ( A\to B \right ) & r_{mp}(4)(5) \\ (7) & A\to B & r_{mp}(6) \\ (8) & B & r_{mp}(7) \end{array} (1)(2)(3)(4)(5)(6)(7)(8)¬A(¬B¬A)¬B¬A(¬B¬A)(AB)AB(AB)(¬A(AB))¬A(AB)ABBA1rmp(1)A3rmp(2)(3)A1rmp(4)(5)rmp(6)rmp(7)
由于 B B B的任意性,所以 Γ \Gamma Γ可以推出任意公式。
(2) Γ \Gamma Γ一致
反证法,设 Γ ⇒ A \Gamma \Rightarrow A ΓA推出 Γ ⊬ A \Gamma \not \vdash A ΓA,由引理4.2,则 Γ ∪ { ¬ A } \Gamma \cup \left \{ \neg A \right \} Γ{¬A}也是一致的,由引理4.5,则存在指派 α \alpha α弄真 Γ \Gamma Γ中每个公式,同时弄真 ¬ A \neg A ¬A,即弄假 A A A,这与 Γ ⇒ A \Gamma \Rightarrow A ΓA矛盾。

定理4.5 P C \mathsf{PC} PC的紧致性

对于 P C \mathsf{PC} PC的任意的公式集合 Γ \Gamma Γ,若 Γ \Gamma Γ的任意子集可满足,则 Γ \Gamma Γ也是可满足的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值