数理逻辑小结2——命题演算形式逻辑系统

命题演算形式系统

一 命题演算形式逻辑系统

1 命题演算形式系统的组成

2 命题演算形式系统的公理以及定理

公理

A 1 : A → ( B → A ) A 2 : ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) A 3 : ( ¬ A → ¬ B ) → ( B → A ) \begin{aligned} &A_1:A\to(B\to A)\\ &A_2:(A\to(B\to C))\to((A\to B)\to(A\to C))\\ &A_3:(\neg A\to\neg B)\to(B\to A) \end{aligned} A1:A(BA)A2:(A(BC))((AB)(AC))A3:(¬A¬B)(BA)

推理规则

r m p : A , A → B B r_{mp}:\frac{A,A\to B}{B} rmp:BA,AB

定理

T 1 : A → A T 2 : i f A → ( B → C ) t h e n B → ( A → C ) T 3 : ( A → ( B → C ) ) → ( B → ( A → C ) ) T 4 : ( B → C ) → ( ( A → B ) → ( A → C ) ) T 5 : ( A → B ) → ( ( B → C ) → ( A → C ) ) T 6 : ¬ A → ( A → B ) T 7 : A → ( ¬ A → B ) T 8 : i f ( A → B a n d B → C ) t h e n A → C T 9 : ( ¬ A → A ) → A T 10 : ¬ ¬ A → A T 11 : ( A → ¬ A ) → ¬ A T 12 : A → ¬ ¬ A T 13 : ( A → B ) → ( ¬ B → ¬ A ) T 14 : ( ¬ A → B ) → ( ¬ B → A ) T 15 : ( A → ¬ B ) → ( B → ¬ A ) T 16 : ( ¬ A → B ) → ( ( ¬ A → ¬ B ) → A ) \begin{aligned} &T1:A\to A\\ &T2:if\quad A\to(B\to C)\quad then\quad B\to(A\to C)\\ &T3:(A\to(B\to C))\to(B\to(A\to C))\\ &T4:(B\to C)\to((A\to B)\to(A\to C))\\ &T5:(A\to B)\to((B\to C)\to(A\to C))\\ &T6:\neg A\to(A\to B)\\ &T7:A\to(\neg A\to B)\\ &T8:if\quad (A\to B\quad and\quad B\to C)\quad then \quad A\to C\\ &T9:(\neg A\to A)\to A\\ &T10:\neg\neg A\to A\\ &T11:(A\to\neg A)\to\neg A\\ &T12:A\to\neg\neg A\\ &T13:(A\to B)\to(\neg B\to\neg A)\\ &T14:(\neg A\to B)\to(\neg B\to A)\\ &T15:(A\to\neg B)\to(B\to\neg A)\\ &T16:(\neg A\to B)\to((\neg A\to\neg B)\to A) \end{aligned} T1:AAT2:ifA(BC)thenB(AC)T3:(A(BC))(B(AC))T4:(BC)((AB)(AC))T5:(AB)((BC)(AC))T6:¬A(AB)T7:A(¬AB)T8:if(ABandBC)thenACT9:(¬AA)AT10:¬¬AAT11:(A¬A)¬AT12:A¬¬AT13:(AB)(¬B¬A)T14:(¬AB)(¬BA)T15:(A¬B)(B¬A)T16:(¬AB)((¬A¬B)A)

3 相关定义和定理

定义
  • 公式集的一致性:设 Γ \Gamma Γ P C PC PC 的一个公式集,如果不存在 P C PC PC 的公式 A A A,使得 Γ ⊢ A \Gamma\vdash A ΓA Γ ⊢ ¬ A \Gamma\vdash\neg A Γ¬A 同时成立,则称 Γ \Gamma Γ 是一个一致的公式集
  • 公式集的完全性:设 Γ \Gamma Γ P C PC PC 的一个公式集,如果任意的公式 A A A Γ ⊢ A \Gamma\vdash A ΓA Γ ⊢ ¬ A \Gamma\vdash\neg A Γ¬A 必有一个成立,则称 Γ \Gamma Γ 是一个完备的公式集
定理
  • 演绎定理:对 P C PC PC 中任意公式集 Γ \Gamma Γ 和公式 A , B A,B AB,有 Γ ∪ { A } ⊢ B i f f Γ ⊢ A → B \Gamma\cup\{A\}\vdash B\quad iff\quad \Gamma\vdash A\to B Γ{A}BiffΓAB
  • P C PC PC 的合理性:如果 Γ ⊢ A \Gamma\vdash A ΓA Γ ⇒ A \Gamma\Rightarrow A ΓA,若 ⊢ A \vdash A A ⇒ A \Rightarrow A A
  • P C PC PC 具有一致性
  • P C PC PC 具有不完全性
  • 完备性定理: P C PC PC 是完备的,即对任意公式集合 Γ \Gamma Γ 和公式 A A A,如果 Γ ⇒ A \Gamma\Rightarrow A ΓA,那么 Γ ⊢ A \Gamma\vdash A ΓA 特别地,如果 ⇒ A \Rightarrow A A,那么 ⊢ A \vdash A A
    • 结合 P C PC PC 的合理性可知, Γ ⊢ A i f f Γ ⇒ A \Gamma\vdash A\quad iff\quad\Gamma\Rightarrow A ΓAiffΓA
    • 如果 Γ \Gamma Γ 一致, Γ ⊬ A \Gamma\not\vdash A ΓA,那么 Γ ∪ { ¬ A } \Gamma\cup\{\neg A\} Γ{¬A} 也是一致的
    • 如果 Γ \Gamma Γ 一致, Γ ⊢ A \Gamma\vdash A ΓA,那么 Γ ∪ { A } \Gamma\cup\{A\} Γ{A} 也是一致的
    • 如果 Γ \Gamma Γ 一致,那么存在公式集合 Δ \Delta Δ,使得 Γ ⊆ Δ \Gamma\subseteq\Delta ΓΔ Δ \Delta Δ 是一致的并且 Δ \Delta Δ 是完全的
    • 上面构造的公式集合 Δ \Delta Δ 有如下性质,任意公式 A A A A ∈ Δ A\in\Delta AΔ 当且仅当 Δ ⊢ A \Delta\vdash A ΔA
    • Γ \Gamma Γ 是 PC 的一致公式集合,那么存在一个指派 ∂ \partial ,使得对任意公式 A ∈ Γ A\in\Gamma AΓ,都有 A ∂ = 1 A^{\partial}=1 A=1
  • P C PC PC 的公式集合 Γ \Gamma Γ 是一致的当且仅当它是可满足的。

二 自然演绎推理系统

1 自然演绎推理系统组成

只是将命题演算形式系统中的联结词由完备集 { ¬ , → } \{\neg,\to\} {¬,} 推广至 { ¬ , ∧ , ∨ , → , ↔ } \{\neg,\wedge,\vee,\to,\leftrightarrow\} {¬,,,,}

2 公理、推导规则和定理

公理

Γ ∪ { A } ⊢ A \Gamma\cup\{A\}\vdash A Γ{A}A

推导规则
  1. 假设引入规则
    Γ ⊢ B Γ ; A ⊢ B ( + ) \frac{\Gamma\vdash B}{\Gamma;A\vdash B}\quad(+) Γ;ABΓB(+)

  2. 假设消除规则
    Γ ; A ⊢ B , Γ ; ¬ A ⊢ B Γ ⊢ B ( − ) \frac{\Gamma;A\vdash B,\Gamma;\neg A\vdash B}{\Gamma\vdash B}\quad(-) ΓBΓ;AB,Γ;¬AB()

  3. 析取引入规则
    Γ ⊢ A Γ ⊢ A ∨ B , Γ ⊢ B Γ ⊢ A ∨ B ( ∨ + ) \frac{\Gamma\vdash A}{\Gamma\vdash A\vee B},\frac{\Gamma\vdash B}{\Gamma\vdash A\vee B}\quad(\vee+) ΓABΓA,ΓABΓB(+)

  4. 析取消除规则
    Γ ; A ⊢ C , Γ ; B ⊢ C , Γ ⊢ A ∨ B Γ ⊢ C ( ∨ − ) \frac{\Gamma;A\vdash C,\Gamma;B\vdash C,\Gamma\vdash A\vee B}{\Gamma\vdash C}\quad(\vee-) ΓCΓ;AC,Γ;BC,ΓAB()

  5. 合取引入规则
    Γ ⊢ A , Γ ⊢ B Γ ⊢ A ∧ B ( ∧ + ) \frac{\Gamma\vdash A,\Gamma\vdash B}{\Gamma\vdash A\wedge B}\quad(\wedge+) ΓABΓA,ΓB(+)

  6. 合取消除规则
    Γ ⊢ A ∧ B Γ ⊢ A , Γ ⊢ A ∧ B Γ ⊢ B ( ∧ − ) \frac{\Gamma\vdash A\wedge B}{\Gamma\vdash A},\frac{\Gamma\vdash A\wedge B}{\Gamma\vdash B}\quad(\wedge-) ΓAΓAB,ΓBΓAB()

  7. 蕴含引入规则
    Γ ; A ⊢ B Γ ⊢ A → B ( → + ) \frac{\Gamma;A\vdash B}{\Gamma\vdash A\to B}\quad(\to+) ΓABΓ;AB(+)

  8. 蕴含消除规则
    Γ ⊢ A → B , Γ ⊢ A Γ ⊢ B ( → − ) \frac{\Gamma\vdash A\to B,\Gamma\vdash A}{\Gamma\vdash B}\quad(\to-) ΓBΓAB,ΓA()

  9. 否定引入规则
    Γ ; A ⊢ B , Γ ; A ⊢ ¬ B Γ ⊢ ¬ A ( ¬ + ) \frac{\Gamma;A\vdash B,\Gamma;A\vdash\neg B}{\Gamma\vdash\neg A}\quad(\neg+) Γ¬AΓ;AB,Γ;A¬B(¬+)

  10. 否定消除规则
    Γ ⊢ A , Γ ⊢ ¬ A Γ ⊢ B ( ¬ − ) \frac{\Gamma\vdash A,\Gamma\vdash\neg A}{\Gamma\vdash B}\quad(\neg-) ΓBΓA,Γ¬A(¬)

  11. ¬ ¬ \neg\neg ¬¬ 引入规则
    Γ ⊢ A Γ ⊢ ¬ ¬ A ( ¬ ¬ + ) \frac{\Gamma\vdash A}{\Gamma\vdash\neg\neg A}\quad(\neg\neg+) Γ¬¬AΓA(¬¬+)

  12. ¬ ¬ \neg\neg ¬¬ 消除规则
    Γ ⊢ ¬ ¬ A Γ ⊢ A ( ¬ ¬ − ) \frac{\Gamma\vdash\neg\neg A}{\Gamma\vdash A}\quad(\neg\neg-) ΓAΓ¬¬A(¬¬)

  13. ↔ \leftrightarrow 引入规则
    Γ ⊢ A → B , Γ ⊢ B → A Γ ⊢ A ↔ B ( ↔ + ) \frac{\Gamma\vdash A\to B,\Gamma\vdash B\to A}{\Gamma\vdash A\leftrightarrow B}\quad(\leftrightarrow+) ΓABΓAB,ΓBA(+)

  14. ↔ \leftrightarrow 消除规则
    Γ ⊢ A ↔ B Γ ⊢ A → B , Γ ⊢ A ↔ B Γ ⊢ B → A ( ↔ − ) \frac{\Gamma\vdash A\leftrightarrow B}{\Gamma\vdash A\to B},\frac{\Gamma\vdash A\leftrightarrow B}{\Gamma\vdash B\to A}\quad(\leftrightarrow-) ΓABΓAB,ΓBAΓAB()

定理
  1. 定理 1
    ⊢ A ∨ ¬ A \vdash A\vee \neg A A¬A

  2. 定理 2
    ⊢ ¬ ( A ∨ B ) ↔ ¬ A ∧ ¬ B \vdash\neg(A\vee B)\leftrightarrow\neg A\wedge\neg B ¬(AB)¬A¬B

  3. 定理 3
    ⊢ ¬ ( A ∧ B ) ↔ ¬ A ∨ ¬ B \vdash\neg(A\wedge B)\leftrightarrow\neg A\vee\neg B ¬(AB)¬A¬B

  4. 定理 4
    ¬ A → B ⊢ ⊣ A ∨ B \neg A\to B\vdash\dashv A\vee B ¬ABAB

  5. 定理 5
    A → B ⊢ ⊣ ¬ A ∨ B A\to B\vdash\dashv\neg A\vee B AB¬AB

  6. 定理 6
    ⊢ A ∧ ( B ∨ C ) ↔ ( A ∧ B ) ∨ ( A ∧ C ) ⊢ A ∨ ( B ∧ C ) ↔ ( A ∨ B ) ∧ ( A ∨ C ) \vdash A\wedge(B\vee C)\leftrightarrow(A\wedge B)\vee(A\wedge C)\\ \vdash A\vee(B\wedge C)\leftrightarrow(A\vee B)\wedge(A\vee C) A(BC)(AB)(AC)A(BC)(AB)(AC)

  7. 定理 7
    P C 的 公 理 是 N D 的 定 理 , 即 1. ⊢ A → ( B ∨ A ) 2. ⊢ ( A → ( B ∨ C ) ) → ( ( A → B ) → ( A → C ) ) 3. ⊢ ( ¬ A → ¬ B ) → ( B → A ) \begin{aligned} &PC 的公理是 ND的定理,即\\ &1.\vdash A\to(B\vee A)\\ &2.\vdash(A\to(B\vee C))\to((A\to B)\to(A\to C))\\ &3.\vdash(\neg A\to\neg B)\to(B\to A) \end{aligned} PCND1.A(BA)2.(A(BC))((AB)(AC))3.(¬A¬B)(BA)

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值