微调中文改错模型,使用Pytorch+Transformers实现

MacBertCsc-Fine tuning

微调中文改错模型

使用Pytorch+Transformers实现

由于最近自己的需要,使用Transformers库进行了中文纠错的微调模型,并设计了一个GUI程序
训练代码为main.ipynb,在词粒度上面,Accuracy达到了91%的水平
GUI代码为main.py,通过调用保存微调后的模型进行推理
现已开源,有需要的兄弟自取,保证可以运行,如果对你有帮助的话,给个star吧
github链接
gitee链接
软件截图

基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 基于的BERT的文本纠错模型python源码+项目说明+数据集+详细注释.zip 【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载使用。 2、适用人群:主要针对计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、数学、电子信息等)的同学或企业员工下载使用,具有较高的学习借鉴价值。 3、不仅适合小白学习实战练习,也可作为大作业、课程设计、毕设项目、初期项目立项演示等,欢迎下载,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值