机制设计原理与应用(二)简单的拍卖机制

2 简单的拍卖机制

2.1 在CS/EE中的应用

关键词

  • 拍卖/机制设计/游戏
  • (真实性/激励相容性/策略证明)机制
  • 激励机制

还有一些你感兴趣的应用程序,例如:

  • 无线网络中的频谱共享
  • 众包
  • 边缘计算中的计算卸载

二价拍卖SPSB机制(Vickrey Auction)

第二价格密封竞标(SPSB)机制。

封闭式拍卖:出价放在密封的信封里,也就是其他人不知道你的。

  • 竞标者不知道别人的出价;不调整出价,效率高
  • 大多数与拍卖有关的论文都属于这一类

在SPSB机制中,包括以下部分:

  • 模型:买方为单一商品提交密封的投标。
  • 分配规则:出价最高的买家赢得该商品。
  • 支付规则:赢家支付第二高出价的价格。

SPSB的目标是实现社会福利最大化

个人理性。如果所有购买者的行为都是真实的,SPSB机制保证了每个购买者的非负效用。

激励相容性。SPSB机制保证了激励相容性,也就是说,对于每个买方来说,通过揭示其价值来投标是一种主导策略。

优化问题公式化
arg ⁡ max ⁡ x , p ∑ i ∈ B b i x i = ∑ i ∈ B v i x i  s.t.,  ∑ i ∈ B x i ≤ 1 ; x i = 0  or  1 , ∀ i ∈ B ; U i ( b i ) = v i x i − p i ( b i , x ) , ∀ i ∈ B ; U i ( b i = v i ) ≥ U i ( b i = v i ′ ) , ∀ v i ≠ v i ′ , ∀ i ∈ B ; U i ( b i = v i ) ≥ 0 , ∀ i ∈ B . \begin{array}{ll} & \underset{\boldsymbol{x}, \boldsymbol{p}}{\arg \max } \sum_{i \in \mathcal{B}} b_{i} x_{i}=\sum_{i \in \mathcal{B}} v_{i} x_{i} \\ \text { s.t., } & \sum_{i \in \mathcal{B}} x_{i} \leq 1 ; \\ & x_{i}=0 \text { or } 1, \quad \forall i \in \mathcal{B} ; \\ & U_{i}\left(b_{i}\right)=v_{i} x_{i}-p_{i}\left(b_{i}, \boldsymbol{x}\right), \quad \forall i \in \mathcal{B} ; \\ & U_{i}\left(b_{i}=v_{i}\right) \geq U_{i}\left(b_{i}=v_{i}^{\prime}\right), \quad \forall v_{i} \neq v_{i}^{\prime}, \forall i \in \mathcal{B} ; \\ & U_{i}\left(b_{i}=v_{i}\right) \geq 0, \quad \forall i \in \mathcal{B} . \end{array}  s.t., x,pargmaxiBbixi=iBvixiiBxi1;xi=0 or 1,iB;Ui(bi)=vixipi(bi,x),iB;Ui(bi=vi)Ui(bi=vi),vi=vi,iB;Ui(bi=vi)0,iB.
SPSB结果的确定:
x i = { 1 ,  if  b i > max ⁡ j ≠ i b j ; 0 ,  if  b i < max ⁡ j ≠ i b j . p i = { max ⁡ j ≠ i b j ,  if  b i > max ⁡ j ≠ i b j ; 0 ,  if  b i < max ⁡ j ≠ i b j x_{i}=\left\{\begin{array}{ll} 1, \text { if } b_{i}>\max _{j \neq i} b_{j} ; \\ 0, \text { if } b_{i}<\max _{j \neq i} b_{j} . \end{array} \quad p_{i}=\left\{\begin{array}{ll} \max _{j \neq i} b_{j}, & \text { if } b_{i}>\max _{j \neq i} b_{j} ; \\ 0, & \text { if } b_{i}<\max _{j \neq i} b_{j} \end{array}\right.\right. xi={1, if bi>maxj=ibj;0, if bi<maxj=ibj.pi={maxj=ibj,0, if bi>maxj=ibj; if bi<maxj=ibj
特殊情况:如果 b i = m a x j ≠ i b j b_i = max_{j \neq i} b_j bi=maxj=ibj,以随机方式打破平局。

2.2 VCG机制

SPSB只能处理单一单位的拍卖。

如果有一套S的多件物品要拍卖怎么办?如果每个买家对每件物品都有单独的价值,则运行多个SPSB。

如果买家有不同的需求,而且是一心一意的,怎么办?每个买家只对获得其所有的需求感兴趣,否则就什么都没有。

组合拍卖

  • 一个卖家想拍卖一组物品 S S S
  • 每个买方 i 对其要求的捆绑物 T i ⊆ S T_i \subseteq S TiS有一个价值 v i v_i vi
  • 与SPSB不同,可以有多个赢家。
  • 分配决策(赢家确定)是决定是否给予每个买方物品 T i T_i Ti
  • 赢家可以通过不同的支付方式收取费用。

具体过程

每个买方投标 b i ( T i ) b_i(T_i) bi(Ti)来竞争其要求的捆绑物 T i ⊆ S T_i \subseteq S TiS。请注意, b i ( T i ) = v i ( T i ) b_i(T_i) = v_i(T_i) bi(Ti)=vi(Ti)只有在买方的行为是真实的成立。

拍卖者确定一个最佳分配(赢家确定),使所有赢家的总投标价格最大化。请注意,这等同于社会福利最大化。

随着最佳赢家的确定 { x i ∗ } i = 1 N \{x_i^*\}_{i=1}^N {xi}i=1N,向每个买方i收取一个适当的价格 p i p_i pi,计算公式为

p i = ( max ⁡ { x j } j ≠ i ∑ b j ( T j ) x j ) − ∑ j ≠ i b j ( T j ) x j ∗ p_{i}=\left(\max _{\left\{x_{j}\right\}_{j \neq i}} \sum b_{j}\left(T_{j}\right) x_{j}\right)-\sum_{j \neq i} b_{j}\left(T_{j}\right) x_{j}^{*} pi=({xj}j=imaxbj(Tj)xj)j=ibj(Tj)xj
请注意,第一项是没有买方参与的拍卖的最大福利,它可以通过从输入中删除买方的出价并优化其余N-1个买方的分配来获得。第二项收集了所有的出价从最佳分配x,但买方除外。

特性

VCG机制输出一个社会福利最大化的分配。

个人合理性:VCG机制保证任何诚实的买方的效用总是非负的。

激励相容性:VCG机制保证了每个买家都能通过竞标自己的真实价值来最大化自己的效用。

清注意,VCG不能应用于NP-hard的资源分配问题!

2.3 LOS机制(类似Vickrey)

VCG机制高度依赖于资源分配的最优解。这个特性决定了VCG机制很难解决NP-hard问题,因为NP-hard问题很难找到最优解。

如果资源分配问题是NP-hard的,怎么办?实践中的大多数资源分配问题都可能是NP-hard的。

我们能否应用近似的算法进行资源分配?请注意,VCG与任何近似的分配是不相容的!如果使用近似最优解,则VCG的支付设计可能不再保证个人理性IR和激励容错性IC。

因此,我们提出了多项式时间的近似解决方案,LOS机制(Lehmann-Ocallaghan-Shoham(LOS)机制)。

模型:组合拍卖。

分配

卖方将m个相同的物品拍卖给N个买家,每个买家i的价值为 v i v_i vi,但对其需求的 T i T_i Ti报价 b i b_i bi。拍

拍卖人对收到的出价进行重新排序,按照下列顺序:
b 1 T 1 ≥ b 2 T 2 ≥ ⋯ ≥ b N T N \frac{b_1}{\sqrt{T_1}} \ge \frac{b_2}{\sqrt{T_2}}\ge \cdots \ge \frac{b_N}{\sqrt{T_N}} T1 b1T2 b2TN bN
根据上述顺序,检查从1到N的所有买方i:如果卖方剩余物品的数量不低于 T i T_i Ti,设 x i = 1 x_i=1 xi=1表示买方i获胜;否则,设置 x i = 0 x_i=0 xi=0,表示买方i失败。

LOS分配算法有一个 m \sqrt{m} m -近似值,这代表了最差情况下,最优解最大是LOS算法所得解的 m \sqrt{m} m 倍:
∑ i ∈ W ∗ b i ∑ i ∈ W L O S b i ≤ m \frac{\sum_{i \in W^{*}} b_{i}}{\sum_{i \in W^{L O S}} b_{i}} \leq \sqrt{m} iWLOSbiiWbim
定价

具体的想法是向每个买家收取"类似Vickrey"的费用。

u-Blocks:通过应用LOS分配算法,假设买方i赢了而买方j输了。如果买方j可以通过从LOS分配算法的输入中删除买方i的出价而获胜,我们就说买方i是买方j的u-block

LOS支付方案:中标的买家将按对应的U-blocks买家的"最有价值"的出价收费。

如果买方i输了或者买方i没有任何u-block,那么它的付款被设定为0。

如果买方i被LOS分配算法授予其需求 T i T_i Ti,并且让买方j(对应 T j T_j Tj b j b_j bj)是具有买方阻挡的最低指数的人(简单理解就是最阻挡你成为胜者的人),那么买方i的付款为
p i = b j T j × T i p_i = \frac{b_j}{\sqrt{T_j}} \times \sqrt{T_i} pi=Tj bj×Ti
特性

LOS输出了一个与最优社会福利有 m \sqrt{m} m -近似值的分配。

个人合理性:LOS机制保证任何诚实的买方的效用总是非负的。

激励相容:LOS机制保证每个买主都能通过出价自己的真实估价来实现自己的效用最大化。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值