高效的区间二叉搜索树:线段树

与树状数组类似,线段树也是一种用来维护区间信息的数据结构,可以在对数时间复杂度内实现更新和查询等操作。但相较于树状数组多用于前缀和查询不同,线段树的应用范围更为广泛,例如区间最值等问题,代价是需要消耗更多的存储空间。

结构

对于一个长度为 7 的数组,根据该数组 nums 元素建立的线段树结构如下图所示。

每个结点存储的值为区间 nums[L ~ R] 的元素和,其中根节点对应的 L = 0, R = 6,即整个数组的元素和。然后每一层的结点将区间均分为 [L, (L + R) / 2][(L + R) / 2 + 1, R] 两部分。注意按此方式进行划分,得到的两个子区间始终满足:左右区间长度分别为 len1 和 len2,且 len1 == len2 || len1 == len2 + 1。不难得知:这样的结构构成一个完全二叉树,因此使用顺序存储将会变得很方便:根节点下标为 0;对于每个下标为 idx 的结点,其左孩子下标为 2 * idx + 1,右孩子下标为 2 * idx + 2

请添加图片描述

构造

由于叶子结点的 L 和 R 相等,其值正好为 nums[L],而每个父结点的值为其两个子结点的值之和,因此可以利用动态规划的思想,先将每个叶子结点的值求出,再依次求出其对应的父结点的值,最终完成线段树的建立。

有一个值得注意的细节就是关于线段树数组 tree 的长度问题。若线段树正好构成一个满二叉树,那么树的深度(令根结点深度为 1)为 logm + 1(m 为 nums 长度,正好为 2 的幂),则当 nums 的长度为 n (n 为任意正整数)时,树的深度为 ⌈logn⌉ + 1.

若给树最底层的空结点也分配空间,则结点总数 cnt = 2⌈logn⌉ + 1 - 1.

令 n = 2x,有 cnt = 2 * 2x - 1 = 2 * n - 3.

令 n = 2x + 1,有 cnt = 4 * 2x - 1 = 4 * n - 5.

可见始终有 cnt < 4 * n,因此为了方便起见,通常情况下直接令 tree 的长度为 4 * n.

查询

查询区间 nums[p ~ q] 的元素和时,若正好可以查询到当前结点 node 对应的区间为 [L, R] 且有 L == p && R == q,那么此时的 tree[node] 即为所要查找的区间和,直接返回即可;

否则可将其进行拆分为两个子区间,查找这两个子区间的值,将其求和后返回。如需要查找 nums[2 ~ 4] 的元素和,可将其划分为 nums[2 ~ 3] + nums[4 ~ 4],分别在根节点的左右两个子树中查找。

更新

更新与构造做法类似,同样是先修改叶子节点,再依次向上修改。

不同之处在于更新每次只需要处理一个分支,时间开销 T(n) = T(n / 2) + O(1),时间复杂度为 O(logn);而构造时左右子树均需要处理,时间开销 T(n) = 2 * T(n / 2) + O(1),时间复杂度为 O(n).

代码实现

class segmentTree {
private:
	int n;
	vector<int> tree;
public:
	segmentTree(vector<int>& nums) : n(nums.size()), tree(4 * nums.size()) {
		function<void(int, int, int)> build = [&](int node, int low, int high) {
			if (low == high) {
				tree[node] = nums[low];
				return;
			}
			int mid = low + (high - low) / 2;
			build(node * 2 + 1, low, mid);
			build(node * 2 + 2, mid + 1, high);
			tree[node] = tree[2 * node + 1] + tree[2 * node + 2];
		};
		build(0, 0, n - 1);
	}
	void changeVal(int idx, int val) {
		function<void(int, int, int)> change = [&](int node, int low, int high) {
			if (low == high) {
				tree[node] = val;
				return;
			}
			int mid = low + (high - low) / 2;
			if (idx <= mid) {
				change(2 * node + 1, low, mid);
			}
			else {
				change(2 * node + 2, mid + 1, high);
			}
			tree[node] = tree[2 * node + 1] + tree[2 * node + 2];
		};
		change(0, 0, n - 1);
	}
	int rangeSum(int l, int r) {
		function<int(int, int, int, int, int)> range = [&](int l, int r, int node, int low, int high) -> int {
			if (l == low && r == high) {
				return tree[node];
			}
			int mid = low + (high - low) / 2;
			if (r <= mid) {
				return range(l, r, 2 * node + 1, low, mid);
			}
			else if (l > mid) {
				return range(l, r, 2 * node + 2, mid + 1, high);
			}
			else {
				return range(l, mid, 2 * node + 1, low, mid) + range(mid + 1, r, 2 * node + 2, mid + 1, high);
			}
		};
		return range(l, r, 0, 0, n - 1);
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值