题目链接
题目意思
给出n个数,求任意区间【left,right】的AC率中最小的那个值。
区间AC率=distinct【left,right】/(right-left+1)
distinct的中文意思是唯一的,特殊的,表示区间【left,right】中不同数字的个数
解题思路
我们求AC率,它无非就是0~1之间的一个数字,因此采用二分答案的方法求解。
现在假设答案为mid,则 distinct【left,right】/(right-left+1)<=mid
,说明答案是小于mid的。
上边的式子可以进行变形得:
distinct【left,right】<=mid*(right-left+1)
distinct【left,right】+mid*left<=mid*(right+1)
因此确定一个mid值,我们构建一棵空的线段树,每个节点的值先赋值为mid*left
,其中left为当前节点的左边界,对于线段树的每个节点我们存放的是:distinct【left,right】+mid*left
,对于这些节点我们维护的是节点所代表区间的最小值,因为固定右边界的时候,右侧mid*(right+1)
是固定的,我们需要让左侧尽量小。
那么需要更新的就是distinct【left,right】
区间中的值。我们可以通过遍历右边界,数组中的每个数都可以作为右边界,对于新加入线段树的a[i]。
pre[a[i]]记录前一次a[i]这个数字出现的位置,因此我们知道在这次遇见a[i]之前,pre[a[i]]+1~i,这些位置都没有出现过a[i]这个数字,所以在线段树中区间pre[a[i]]~i,应该加上1,就是a[i]这个数字。
更新完后,我们就可以查询【1,i】这个区间,原来我比较不理解这里,后来想明白了,1~i,这个区间求解的时候,这个区间包含许多子区间,例如【2,i】,【3,i】,【4,i】~【i,i,】。这样的话每次插入第i个数,相当于从这些区间中求了一个distinct【left,right】+mid*left 的最小值。
在循环过程中,只要有一个值小于mid*(right+1),就说明我们假设的值偏大了,循环完了也没出现这种情况
说明假设的值偏小了。
代码部分
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
#define eps 1e-6
#define inf 0x3f3f3f3f
#define lchild left,mid,root<<1
#define rchild mid+1,right,root<<1|1
const int maxn=60010;
int a[maxn];
double Min[maxn<<2];///线段树节点值
double lazy[maxn<<2];///懒惰标记数组
int pre[maxn];///pre[i]用来存放i这个数上一次出现的时候在数组中的位置
///更新当前节点
void push_up(int root)
{
Min[root]=min(Min[root<<1],Min[root<<1|1]);
}
///懒惰标记下推
void push_down(int root)
{
if(lazy[root]>eps)
{
Min[root<<1]+=lazy[root];
lazy[root<<1]+=lazy[root];
Min[root<<1|1]+=lazy[root];
lazy[root<<1|1]+=lazy[root];
lazy[root]=0;
}
}
///构建线段树
void build(int left,int right,int root,double temp)
{
Min[root]=left*temp;
lazy[root]=0;
if(left==right)
return;
int mid=(left+right)>>1;
build(lchild,temp);
build(rchild,temp);
push_up(root);
}
///区间更新,同时加上add
void updata(int L,int R,int add,int left,int right,int root)
{
if(L<=left&&right<=R)
{
Min[root]+=add;
lazy[root]+=add;
return;
}
push_down(root);
int mid=(left+right)>>1;
if(L<=mid)
updata(L,R,add,lchild);
if(R>mid)
updata(L,R,add,rchild);
push_up(root);
}
///区间查找操作
double query(int L,int R,int left,int right,int root)
{
if(L<=left&&right<=R)
return Min[root];
push_down(root);
double ans=inf*1.0;
int mid=(left+right)>>1;
if(L<=mid)
ans=min(ans,query(L,R,lchild));
if(R>mid)
ans=min(ans,query(L,R,rchild));
return ans;
}
///判断二分答案偏大还是偏小
bool check(int n,double temp)
{
build(1,n,1,temp);
memset(pre,0,sizeof(pre));
for(int i=1; i<=n; i++)
{
updata(pre[a[i]]+1,i,1,1,n,1);
double minimum=query(1,i,1,n,1);
pre[a[i]]=i;
if(temp*(i+1)-minimum>=eps)
return true;
}
return false;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
double L,R,mid,ans;
L=0;
R=1;
for(int i=0; i<30; i++)
{
mid=(L+R)/2.0;
if(check(n,mid))
R=ans=mid;
else
L=ans=mid;
}
printf("%.10lf\n",ans);
}
return 0;
}