神经网络中的logits是什么意思

logits在神经网络中是未经归一化的预测得分向量,通常作为多分类问题中softmax函数的输入。softmax函数将logits转换为概率分布,每个类别的概率值对应一个可能的类别。此外,logits也常被认为是sigmoid函数的逆运算。了解更多关于logits和tf.nn.sigmoid_cross_entropy_with_logits的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

logit 在统计学上是一个数学函数,但是在神经网络中却有着不同的含义。

说白了,logits 就是一个向量,下一步通常被投给 softmax 的向量。

就是下图这个箭头所指的位置:

在这里插入图片描述
logits 参考这里
The vector of raw (non-normalized) predictions that a classification model generates, which is ordinarily then passed to a normalization function. If the model is solving a multi-class classification problem, logits typically become an input to the softmax function. The softmax function then generates a vector of (normalized) probabilities with one value for each possible class.

In addition, logits sometimes refer to the element-wise inverse of the sigmoid function. For more information, see tf.nn.sigmoid_cross_entropy_with_logits.

<think>嗯,用户问的是图神经网络的输出是什么。首先,我需要回忆一下图神经网络(GNN)的基本结构和应用场景。GNN主要用于处理图结构数据,所以不同类型的任务会有不同的输出形式。常见的任务包括节点分类、图分类、链接预测等,对应的输出也应该不同。 首先,节点分类任务。这时候GNN的输出应该是每个节点的特征向量,经过处理后的结果,比如分类概率。比如每个节点可能代表社交网络中的用户,输出就是用户属于不同类别的概率。需要确认GNN的最后一层是否用softmax这样的激活函数来生成概率分布。 然后是图分类任务。这种情况下,整个图需要有一个全局的表示,通常是通过池化(pooling)操作,比如平均池化或注意力机制池化,将所有节点的特征聚合成一个向量。之后,这个向量可能通过全连接层处理,得到整个图的分类结果。比如在分子属性预测中,图的输出可能表示该分子是否有某种特性。 接下来是链接预测任务,这涉及到预测图中两个节点之间是否存在边。这时候的输出可能是节点对的相似度分数,通过内积、余弦相似度等方式计算,再经过sigmoid转换成概率。这时候需要解释负采样等技术,因为实际应用中边的数量可能很大,但负样本的选择会影响训练效果。 另外,还有生成任务,比如生成新的图结构。这种情况下,GNN的输出可能是节点和边的生成参数,比如生成图的邻接矩阵和节点特征矩阵。比如在药物发现中,生成新的分子结构可能需要这种输出。 还要注意不同层次的输出,比如节点级、边级、图级。每个层次对应的应用例子需要具体说明,比如节点级是分类,边级是链接预测,图级是整个图的属性预测。 用户可能需要了解GNN输出的多样性,以及如何根据任务设计输出层。同时,可能需要考虑不同的GNN变体,比如GCN、GAT、GraphSAGE等,它们的输出层是否有差异。但用户的问题比较基础,可能不需要深入变体,而是总体介绍。 需要确保解释清晰,分点说明不同任务对应的输出,同时使用例子帮助理解。避免使用过于专业的术语,保持口语化,但又要准确。比如用“嵌入向量”而不是“低维表示”,或者同时解释术语。另外,用户提到使用中文回答,数学公式用$...$或$$...$$,所以在适当的地方可能需要用LaTeX表达一些公式,比如节点嵌入的公式,如$$h_v^{(k)} = \text{AGGREGATE}({h_u^{(k-1)}, u \in \mathcal{N}(v)})$$,但要注意用户是否希望看到这些公式。根据系统指令,如果有数学内容需要用正确的LaTeX格式,但用户的问题可能不涉及太多数学,可能需要视情况添加。 最后,总结输出形式取决于任务类型,并强调设计输出层的重要性。确保回答结构清晰,分点列出不同任务类型及其对应的输出,帮助用户逐步理解。</think>图神经网络(GNN)的输出形式取决于具体任务类型。以下是不同场景下的输出形式及对应示例: --- ### 1. **节点级任务(Node-Level)** - **输出形式**:每个节点的嵌入向量(特征表示)或分类概率。 - **典型应用**:社交网络用户分类、论文引用网络中的节点分类。 - **示例**: - 节点嵌入:$$h_v = \text{GNN}(A, X)$$,其中 $A$ 为邻接矩阵,$X$ 为节点特征。 - 分类概率:对节点嵌入应用全连接层 + softmax,输出概率分布,如 $P(y_v=c) = \text{softmax}(W h_v)$。 --- ### 2. **边级任务(Edge-Level)** - **输出形式**:边存在概率或边属性。 - **典型应用**:社交网络好友推荐(链接预测)、分子键能预测。 - **示例**: - 链接预测:对节点对 $(u, v)$ 计算相似度,如 $s_{uv} = \sigma(h_u^T h_v)$,$\sigma$ 为 sigmoid 函数。 - 边属性预测:输出边的多维特征,如分子键的类型(单键/双键)。 --- ### 3. **图级任务(Graph-Level)** - **输出形式**:整个图的全局表示或分类结果。 - **典型应用**:分子属性预测、社交网络社区检测。 - **示例**: - 图嵌入:通过池化(如均值池化)聚合所有节点特征,得到 $h_G = \text{MEAN}(\{h_v | v \in V\})$。 - 图分类:对 $h_G$ 应用全连接层,输出如 $P(y_G=c) = \text{softmax}(W h_G)$。 --- ### 4. **生成任务(Generation)** - **输出形式**:生成新图的邻接矩阵和节点特征矩阵。 - **典型应用**:分子生成、社交网络合成。 - **示例**:生成邻接矩阵 $\hat{A}$ 和节点特征 $\hat{X}$,需满足 $\hat{A}_{ij} \in [0,1]$(概率形式)。 --- ### 输出设计的关键点 1. **任务适配性**:输出层需匹配任务需求(如分类任务用 softmax,回归任务用线性层)。 2. **层次性**:节点/边/图级任务需选择对应粒度的特征聚合方式。 3. **可解释性**:某些场景需输出注意力权重(如 GAT),解释节点间重要性。 --- ### 示例代码框架(PyTorch) ```python # 节点分类任务 class GNN(nn.Module): def __init__(self): super().__init__() self.gcn = GCNLayer(in_dim=64, out_dim=64) # 假设已实现GCN层 self.fc = nn.Linear(64, num_classes) def forward(self, x, adj): h = self.gcn(x, adj) # 输出节点嵌入 return self.fc(h) # 输出分类logits # 图分类任务 class GraphClassifier(nn.Module): def __init__(self): super().__init__() self.gnn = GNN() self.pool = global_mean_pool # 图池化 def forward(self, x, adj, batch): h_nodes = self.gnn(x, adj) h_graph = self.pool(h_nodes, batch) # 聚合为图嵌入 return self.fc(h_graph) ``` --- 通过灵活设计输出层,GNN 可适配多种图结构任务,核心在于如何从消息传递中提取并转换有效的特征表示。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值