2020-10-21:ZK临时节点和持久节点的区别是?

ZooKeeper中的节点分为临时节点和持久节点。临时节点在客户端断开连接时会自动删除,而持久节点则不会。创建临时节点需要添加 `-e` 参数,且临时节点无法拥有子节点,但持久节点可以。了解这些区别对于正确使用ZooKeeper服务至关重要。

2020-10-21:ZK临时节点和持久节点的区别是?

前言

每日一题专栏

ZK临时节点和持久节点的区别是?

  1. 语法不同 create key value 是持久节点,零时节点需要加 -e 的参数

  2. 临时节点和客户端断开连接自动删除,持久节点不会

  3. 临时节点下面不能接子节点,持久节点可以

--- kind: Deployment apiVersion: apps/v1 metadata: name: kafka annotations: {} spec: replicas: 1 selector: matchLabels: app: kafka template: metadata: creationTimestamp: null labels: app: kafka spec: volumes: - name: kafka-data hostPath: path: /data/local/kafka/kafka_data type: '' containers: - name: kafka image: >- showcon-registry-registry.cn-hangzhou.cr.aliyuncs.com/library/kafka:2.13-2.7.0 ports: - containerPort: 9092 protocol: TCP env: - name: KAFKA_LISTENERS value: 'PLAINTEXT://0.0.0.0:9092' - name: KAFKA_ADVERTISED_LISTENERS value: 'PLAINTEXT://kafka-svc:9092' - name: KAFKA_ZOOKEEPER_CONNECT value: 'zookeeper:2181' - name: KAFKA_BROKER_ID value: '0' - name: KAFKA_AUTO_CREATE_TOPICS_ENABLE value: 'true' resources: requests: cpu: 125m memory: 512Mi volumeMounts: - name: kafka-data mountPath: /bitnami terminationMessagePath: /dev/termination-log terminationMessagePolicy: File imagePullPolicy: IfNotPresent restartPolicy: Always terminationGracePeriodSeconds: 30 dnsPolicy: ClusterFirst securityContext: {} imagePullSecrets: - name: regsecret schedulerName: default-scheduler strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 25% maxSurge: 25% revisionHistoryLimit: 10 progressDeadlineSeconds: 600 --- kind: Deployment apiVersion: apps/v1 metadata: name: zookeeper annotations: {} spec: replicas: 1 selector: matchLabels: app: zookeeper template: metadata: creationTimestamp: null labels: app: zookeeper spec: volumes: - name: zookeeper-data hostPath: path: /data/local/kafka/zookeeper_data type: '' containers: - name: zookeeper image: >- showcon-registry-registry.cn-hangzhou.cr.aliyuncs.com/library/zookeeper:3.4.13 ports: - containerPort: 2181 protocol: TCP resources: requests: cpu: 125m memory: 256Mi volumeMounts: - name: zookeeper-data mountPath: /opt/zookeeper-3.4.13/data terminationMessagePath: /dev/termination-log terminationMessagePolicy: File imagePullPolicy: IfNotPresent restartPolicy: Always terminationGracePeriodSeconds: 30 dnsPolicy: ClusterFirst securityContext: {} imagePullSecrets: - name: regsecret schedulerName: default-scheduler strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 25% maxSurge: 25% revisionHistoryLimit: 10 progressDeadlineSeconds: 600 --- kind: Service apiVersion: v1 metadata: name: kafka-svc labels: name: kafka annotations: {} spec: ports: - name: kafka-port protocol: TCP port: 9092 targetPort: 9092 selector: app: kafka type: ClusterIP sessionAffinity: None --- kind: Service apiVersion: v1 metadata: name: zookeeper labels: app: zookeeper spec: ports: - name: client protocol: TCP port: 2181 targetPort: 2181 - name: follower protocol: TCP port: 2888 targetPort: 2888 - name: leader protocol: TCP port: 3888 targetPort: 3888 selector: app: zookeeper type: ClusterIP sessionAffinity: None 分析下这个配置文件,如果我要将zookeeper的类型改为headless 我需要怎么改
最新发布
09-17
<think>好的,我现在需要解决用户提到的Hadoop ResourceManager日志中的RMStateStore错误,特别是RMDTMasterKey存储失败状态存储操作失败的问题。首先,我得回忆一下Hadoop ResourceManagerRMStateStore的相关知识。 RMStateStore在ResourceManager中负责持久化存储应用程序节点状态的关键数据,比如RMDTMasterKey。如果这部分存储失败,可能导致RM无法正常启动或运行,进而影响整个YARN集群的稳定性。用户提到的错误可能涉及权限问题、存储路径配置错误、端口冲突或者依赖服务(如ZooKeeper)的问题。 接下来,我需要参考用户提供的引用内容。引用[2]提到了端口占用的问题,虽然用户当前的问题不是端口冲突,但这也提醒我要检查网络配置端口使用情况。引用[4]涉及yarn-site.xml的配置,特别是resourcemanager的主机名设置,这可能影响存储路径的访问权限。此外,用户之前的启动问题可能与权限或配置错误有关,需要重点检查这些方面。 第一步,检查文件系统权限。因为RMStateStore通常将数据存储在本地文件系统或HDFS中,如果ResourceManager没有写入权限,就会导致存储失败。用户需要确认存储路径(如yarn.resourcemanager.store.dir)的权限是否正确设置,确保hadoop用户有读写权限。 第二步,验证配置文件的正确性。查看yarn-site.xml中的相关配置,特别是yarn.resourcemanager.store.class,如果是使用基于文件系统的存储,可能需要确认路径是否存在。如果是使用ZooKeeper,需要检查连接配置是否正确,比如zookeeper的地址、端口以及znode路径。 第三步,查看日志文件。ResourceManager的日志通常位于logs目录下,通过查看详细的错误信息,可以更快定位问题。例如,如果日志中提到无法连接到ZooKeeper,就需要检查ZooKeeper服务是否运行正常,配置是否正确。 第四步,测试存储后端。如果使用的是HDFS作为存储后端,可以用hadoop fs -ls命令检查目标路径是否存在,权限是否正确。如果是本地路径,确认磁盘空间是否足够,是否有写入权限。 第五步,处理端口冲突。虽然当前问题可能不是端口占用,但其他服务可能占用RMStateStore需要的端口,需要检查netstat或lsof的输出,确认相关端口是否空闲。 第六步,清理损坏的状态。如果之前的存储数据损坏,可能需要清理旧的存储目录,然后重启ResourceManager。但要注意,这可能导致应用程序状态丢失,需谨慎操作。 第七步,升级或修复Hadoop版本。某些情况下,这可能是Hadoop本身的bug,查看官方文档或JIRA是否有相关问题的修复版本,考虑升级到修复后的版本。 此外,用户可能需要重新生成安全密钥,特别是如果启用了安全模式,密钥生成错误可能导致存储失败。使用yarn rmadmin生成新的DTMasterKey可能会有帮助。 总结来说,需要系统性地检查权限、配置、依赖服务、日志信息,并逐一排除可能的原因。通过逐步排查,应该能解决RMDTMasterKey存储失败的问题。</think>针对Hadoop ResourceManager日志中出现的$RMStateStore$错误(如$RMDTMasterKey$存储失败状态存储操作错误),以下是分步骤解决方案: --- ### **一、检查存储系统权限** 1. **确认$RMStateStore$存储路径权限** 检查$yarn.resourcemanager.store.dir$配置的路径(默认在$file://${hadoop.tmp.dir}/yarn/system/rmstore$),确保ResourceManager进程有读写权限: ```bash chmod -R 755 /path/to/hadoop/tmp/dir chown -R hadoop:hadoop /path/to/hadoop/tmp/dir ``` 权限不足会导致密钥存储失败[^4]。 2. **HDFS存储后端权限验证** 如果使用HDFS作为存储后端(配置为$hdfs://path/to/rmstore$),执行: ```bash hadoop fs -ls /path/to/rmstore hadoop fs -chmod -R 700 /path/to/rmstore ``` --- ### **二、验证配置文件正确性** 1. **检查$yarn-site.xml$关键配置** 确保以下配置项正确且无冲突: ```xml <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore</value> </property> <property> <name>yarn.resourcemanager.fs.state-store.uri</name> <value>file:///data/yarn/system/rmstore</value> </property> ``` 若使用ZooKeeper作为存储后端,需配置`ZKRMStateStore`并检查ZooKeeper连接参数[^3]。 2. **排查端口冲突** 检查日志中是否有类似`BindException: Port in use`的错误,若存在,释放被占用的端口(如8088)或修改配置[^2]。 --- ### **三、检查依赖服务状态** 1. **ZooKeeper连接问题** 如果使用ZooKeeper存储状态,验证服务是否正常运行: ```bash echo stat | nc zookeeper-host 2181 ``` 检查$yarn.resourcemanager.zk-address$配置是否指向正确的ZooKeeper集群。 2. **HDFS健康状态** 运行`hdfs dfsadmin -report`确认HDFS无异常,避免因HDFS宕机导致状态存储失败。 --- ### **四、处理损坏的状态数据** 1. **清理旧状态存储** 停止ResourceManager后,删除存储目录(谨慎操作!): ```bash rm -rf /path/to/rmstore/RMDTMasterKey ``` 重启ResourceManager尝试重新生成密钥[^1]。 2. **启用安全模式下的密钥修复** 若启用Kerberos,重新生成DTMasterKey: ```bash yarn rmadmin -rollMasterKey ``` --- ### **五、日志分析与调试** 1. **查看ResourceManager日志** 定位日志文件(如`/var/log/hadoop-yarn/resourcemanager.log`),搜索以下关键字: - `RMStateStore Fatal Error` - `Failed to store RMDTMasterKey` - `IOException` 2. **启用调试模式** 在$yarn-env.sh$中添加: ```bash export YARN_ROOT_LOGGER=DEBUG,RFA ``` 重启ResourceManager后获取详细错误信息。 --- ### **六、版本兼容性修复** 1. **升级Hadoop版本** 某些版本(如Hadoop 3.2.3)存在已知的RMStateStore问题,升级到修复版本(如3.3.4+)可解决[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值