泊松分布

泊松分布:
    历史上泊松分布式作为二项分布的近似,由法国数学家泊松引入。在实际中许多现象都服从泊松分布。从意义上说解决的问题是:“在特定时间内发生n个事件的概率”
    泊松分布满足如下公式:

P ( N ( t ) = n ) = ( λ t ) n e − λ t n ! P(N(t) = n) = { ( \lambda t)^ne^{-\lambda t} \over n!} P(N(t)=n)=n!(λt)neλt

    等号左边P表示概率、N表示事件符合的函数关系、t表示为事件、n为数量、 λ \lambda λ表示为频率。

    举例:接下来两个小时,一个婴儿都不出生的概率

P ( N ( 2 ) = 0 ) = ( 3 × 2 ) 0 e − 3 × 2 0 ! ≈ 0.25 P(N(2) = 0) = {(3 \times 2)^0e^{-3 \times 2} \over 0!} \approx 0.25 P(N(2)=0)=0!(3×2)0e3×20.25

               接下来一个小时,至少出生两个婴儿的概率

P ( N ( 1 ) ≥ 2 ) = 1 − P ( N ( 1 ) = 1 ) − P ( N ( 1 ) = 0 ) = 1 − ( 3 × 1 ) 1 e − 3 × 1 1 ! − ( 3 × 1 ) 0 e − 3 × 1 0 ! = 1 − 3 e − 3 − e − 3 = 1 − 4 e − 3 ≈ 0.8009 \begin{array}{l} P(N(1) \geq 2) = 1-P(N(1)=1)-P(N(1)=0) \\ \quad \quad \quad \quad \quad \quad = 1-{(3 \times 1)^1e^{-3 \times 1} \over 1!}-{(3 \times 1)^0e^{-3 \times 1} \over 0!} \\ \quad \quad \quad \quad \quad \quad = 1-3e^{-3}-e^{-3} \\ \quad \quad \quad \quad \quad \quad =1-4e^{-3} \\ \quad \quad \quad \quad \quad \quad \approx 0.8009 \end{array} P(N(1)2)=1P(N(1)=1)P(N(1)=0)=11!(3×1)1e3×10!(3×1)0e3×1=13e3e3=14e30.8009

     泊松分布的图形
泊松分布图形

    可以看到,在频率附近,事件的发生概率最高,然后向两边对称下降,即变得越大和越小都不太可能。每小时出生3个婴儿,这是最可能的结果,出生得越多或越少,就越不可能。

泊松分布产生的一般条件:
    在自然界和人们的现实生活中,经常要遇到在随机时刻出现的某种事件.我们把在随机时刻相继出现的事件所形成的序列,叫做随机事件流。若事件流具有平稳性、无后效性、普通性,则称该事件流为泊松事件流(泊松流)

  1. 平稳性:在任意时间区间内,事件发生k次(k≥0)的概率只依赖于区间长度而与区间端点无关.
  2. 无后效性:在不相重叠的时间段内,事件的发生是相互独立的.
  3. 普通型:如果时间区间充分小,事件出现两次或两次以上的概率可忽略不计.
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值