概率论——泊松随机变量

1 泊松随机变量

  如果一个取值于 0 , 1 , 2 , ⋯ 0,1,2,\cdots 0,1,2,的随机变量对某一个 λ > 0 \lambda\gt 0 λ>0,其概率质量函数为:
p ( i ) = P { X = i } = e − λ λ i i !         i = 0 , 1 , 2 , ⋯ p(i) = P\{X=i\}=e^{-\lambda}\cfrac{\lambda^i}{i!}\ \ \ \ \ \ \ i=0,1,2,\cdots p(i)=P{X=i}=eλi!λi       i=0,1,2,
则称该随机变量为服从参数 λ \lambda λ泊松随机变量。对上述定义的概率质量函数求和为1:
∑ i = 0 ∞ p ( i ) = e − λ ∑ i = 0 ∞ λ i i ! = e − λ e λ = 1 \sum_{i=0}^\infty p(i) = e^{-\lambda}\sum_{i=0}^\infty \cfrac{\lambda^i}{i!} = e^{-\lambda}e^{\lambda} = 1 i=0p(i)=eλi=0i!λi=eλeλ=1
泊松分布有非常广泛的应用,因为 n n n足够大, p p p充分小,而使得 n p np np保持适当的大小时,参数为 ( n , p ) (n,p) (n,p)的二项随机变量可近似地看作是参数为 λ = n p \lambda = np λ=np的泊松随机变量。现来证明这一点:
  假设随机变量 X X X是一个服从参数为 ( n , p ) (n,p) (n,p)的二项随机变量,并记 λ = n p \lambda = np λ=np,则有:
P { X = i } = n ! ( n − i ) ! i ! ∗ p i ( 1 − p ) n − i = n ! ( n − i ) ! i ! ∗ ( λ n ) i ( 1 − λ n ) n − i = n ( n − 1 ) ⋯ ( n − i + 1 ) n i ∗ λ i i ! ∗ ( 1 − λ / n ) n ( 1 − λ / n ) I \begin{aligned} P\{X = i\} &= \cfrac{n!}{(n-i)!i!}*p^i(1-p)^{n-i} \\ &= \cfrac{n!}{(n-i)!i!}*(\cfrac{\lambda}{n})^i(1-\cfrac{\lambda}{n})^{n-i}\\ &= \cfrac{n(n-1)\cdots (n-i+1)}{n^i}*\cfrac{\lambda^i}{i!}*\cfrac{(1-\lambda/n)^n}{(1-\lambda/n)^I} \end{aligned} P{X=i}=(ni)!i!n!pi(1p)ni=(ni)!i!n!(nλ)i(1nλ)ni=nin(n1)(ni+1)i!λi(1λ/n)I(1λ/n)n
对于充分大的 n n n和适当的 λ \lambda λ有:
( 1 − λ n ) n ≈ e − λ n ( n − 1 ) ⋯ ( n − i + 1 ) n i ≈ 1 ( 1 − λ / n ) i ≈ 1 \begin{aligned} &(1-\cfrac{\lambda}{n})^n\approx e^{-\lambda}\\ &\cfrac{n(n-1)\cdots (n-i+1)}{n^i}\approx 1\\ &(1-\lambda/n)^i \approx 1 \end{aligned} (1nλ)neλnin(n1)(ni+1)1(1λ/n)i1
因此:
p { X = i } ≈ e − λ λ i i ! p\{X=i\} \approx e^{-\lambda}\cfrac{\lambda^i}{i!} p{X=i}eλi!λi
换句话说,独立重复地进行 n n n次试验,每次成功的概率为 p p p,当 n n n充分大而 p p p足够小,使得 n p np np保持适当的话,那么成功的次数近似地服从参数为 λ = n p \lambda = np λ=np的泊松分布,这个 λ \lambda λ值通常由经验确定。
  总结成一句话就是:泊松随机变量近似于 n n n很大, p p p很小的二项随机变量, λ = n p \lambda = np λ=np

2 泊松随机变量的期望和方差

  首先计算期望,根据期望的计算公式有
E [ X ] = ∑ i = 0 ∞ i ∗ e − λ λ i i ! = λ ∑ i = 1 ∞ e − λ λ i − 1 ( i − 1 ) ! E[X] = \sum_{i=0}^\infty \cfrac{i*e^{-\lambda}\lambda^i}{i!} = \lambda\sum_{i=1}^\infty \cfrac{e^{-\lambda}\lambda^{i-1}}{(i-1)!} E[X]=i=0i!ieλλi=λi=1(i1)!eλλi1
j = i − 1 j = i-1 j=i1上式得:
E [ X ] = λ e − λ ∑ j = 0 ∞ λ j j ! = λ e − λ e λ = λ E[X] = \lambda e^{-\lambda}\sum_{j=0}^\infty \cfrac{\lambda^{j}}{j!} = \lambda e^{-\lambda}e^\lambda = \lambda E[X]=λeλj=0j!λj=λeλeλ=λ
计算方差时则先计算 E [ X 2 ] E[X^2] E[X2]
E [ X 2 ] = ∑ i = 0 ∞ i 2 ∗ e − λ λ i i ! = λ ∑ i = 1 ∞ i e − λ λ i − 1 ( i − 1 ) ! E[X^2] = \sum_{i=0}^\infty \cfrac{i^2*e^{-\lambda}\lambda^i}{i!} = \lambda\sum_{i=1}^\infty \cfrac{ie^{-\lambda}\lambda^{i-1}}{(i-1)!} E[X2]=i=0i!i2eλλi=λi=1(i1)!ieλλi1
同样令 j = i − 1 j = i-1 j=i1上式得:
E [ X 2 ] = λ ∑ j = 0 ∞ ( j + 1 ) e − λ λ j j ! = λ [ ∑ j = 0 ∞ j e − λ λ j j ! + ∑ j = 0 ∞ e − λ λ j j ! ] = λ ( λ + 1 ) E[X^2] = \lambda \sum_{j=0}^\infty \cfrac{(j+1)e^{-\lambda} \lambda^{j}}{j!} = \lambda[\sum_{j=0}^\infty \cfrac{je^{-\lambda} \lambda^{j}}{j!}+\sum_{j=0}^\infty \cfrac{e^{-\lambda} \lambda^{j}}{j!}] = \lambda(\lambda +1) E[X2]=λj=0j!(j+1)eλλj=λ[j=0j!jeλλj+j=0j!eλλj]=λ(λ+1)
根据方差与期望的关系,方差 V a r ( X ) Var(X) Var(X)得:
V a r ( X ) = E [ X 2 ] − E [ X ] 2 = λ Var(X) = E[X^2] - E[X]^2 = \lambda Var(X)=E[X2]E[X]2=λ
  由此可见,泊松随机变量的期望和方差均等于参数 λ \lambda λ,那此时再来看看与泊松随机变量近似的二项随机变量的期望和方差, λ = n p \lambda = np λ=np,二项随机变量的期望为 n p np np即为 λ \lambda λ,二项随机变量的方差为 n p ( 1 − p ) = λ ( 1 − p ) np(1-p) = \lambda(1-p) np(1p)=λ(1p),由于 p p p足够小,因此方差也近似为 λ \lambda λ
  泊松分布在试验并不独立但是弱相依条件下仍是比较好的近似。

3 泊松范例

  考虑 n n n个事件,第 i i i个事件发生的概率为 p i , i = 1 ⋯ n p_i,i=1\cdots n pi,i=1n,如果所有 p i p_i pi都很小,且试验或者独立,或者至多“弱相依”,那么事件发生次数近似地服从参数为 ∑ i = 1 n p i \sum_{i=1}^np_i i=1npi的泊松分布

4 计算泊松分布函数

  如果随机变量 X X X服从参数为 λ \lambda λ的泊松分布,则:
P { X = i + 1 } = λ i + 1 P { X = i } P\{X=i+1\} = \cfrac{\lambda}{i+1}P\{X = i\} P{X=i+1}=i+1λP{X=i}
因此要计算分布函数 P { X ≤ i } P\{X\le i\} P{Xi}便可以依据上面的推导关系编写程序计算了。例如: X X X服从均值为100的泊松分布,计算 P { X ≤ 90 } P\{X\le 90\} P{X90}

import math 
res = []
res_0 = pow(math.e, -100)
res.append(res_0)
for i in range(0,90):
	temp = (100/(i+1))*res[-1]
	res.append(temp)
print(sum(res))

输出结果为:

0.17138511932176242
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值