泊松随机变量及指数随机变量

本文探讨了泊松随机变量和指数随机变量在概率论中的概念和应用。泊松随机变量作为离散型随机变量,描述事件在特定时间内的发生次数,其概率分布具有特定的性质。指数随机变量作为连续型随机变量,常用于表示独立随机事件发生的时间间隔,且具备无记忆性。两者间存在一定的联系,即当事件发生的次数符合泊松分布时,事件发生的时间间隔服从指数分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泊松随机变量(poisson random variables)是离散型随机变量
指数随机变量 (exponential random variables) 是连续型随机变量

泊松随机变量

该变量描述的是一个事件,在指定时间范围内,可能发生的次数(这里涉及到三个元素,分别是时间,事件,以及事件发生的可能次数)

泊松分布(poisson distribution)

1、描述在一定时间范围内,一个事件发生的次数的概率分布
2、泊松分布的概率质量函数(probability mass function),期望及方差
在这里插入图片描述

泊松分布例子

在这里插入图片描述
在这里插入图片描述

指数随机变量

指数随机变量是连续的,用来描述独立随机事件发生的时间间隔,
在这里插入图片描述

指数分布(Exponential distribution)

用于描述独立随机事件发生的时间间隔的概率分布
在这里插入图片描述

指数分布的一些特性

1、如果在特定时间内,事件发生的次数符合泊松分布,那事件发生的间隔的时间就是指数分布(这里描述的是指数分布与泊松分布存在的关系)
在这里插入图片描述
2、指数分布的无记忆性
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值