第五届太原理工大学程序设计竞赛新生赛(同步赛)F-迷失的Syuggie

F-迷失的Syuggie

题目描述:
Syuggie 的挨炮子耳机不见了。所幸,Syuggie 的HVAVI手机有”查找设备“的功能,它可以显示与耳机的距离。但因为手机与耳机不太适配,查找设备只能显示其与耳机的曼哈顿距离,很怪。但 Syuggie 现在在一个二维的迷宫里,目标是要找到他的耳机。在二维迷宫里,他可以朝上下左右四个方向移动。假设 Syuggie 当前所处位置坐标是 (x, y),则他可以用一步移动到 (x+1, y)、(x-1, y)、(x, y+1)、(x, y-1),可惜因为 Syuggie 没有练过铁头功所以他不能撞到墙上。由于 Syuggie 缺乏锻炼,他最多移动 k 步就走不动了。但即使 Syuggie 找不到他的耳机,他也想要离耳机的曼哈顿距离尽可能地小,说不定可以用蓝牙连接上听歌。
Syuggie 所处的是一个 nm 列的迷宫,由 ‘#’ ‘.’ 和 ‘S’ ‘T’ 组成。其中 ‘#’ 代表墙,‘.’ 代表可以移动的地方,‘S’ 代表 Syuggie 所在的位置,‘T’ 代表耳机所在的位置。
每次移动可以移到相邻且非墙的位置,且不能超出迷宫的边界。最多移动 k 次(可以不移动),求 Syuggie 离耳机最近的曼哈顿距离是多少。
输入描述:
第一行输入三个正整数 n、m、k, ( 1 ≤ n , m , k ≤ 1000 ) ( 1 \le n,m,k \le 1000) (1n,m,k1000) ,表示迷宫的大小以及 Syuggie 最多移动的步数。
接下来 n 行,每行一个长度为 m 的字符串,描述 Syuggie 所处的迷宫。保证字符串由 ‘#’ 、 ‘.’ 、 ‘S’ 和 ‘T’ 组成,且整个迷宫有且只有一个 ‘S’ 与 ‘T’。
输出描述:
输出一行一个整数,表示 Syuggie 可以达到离耳机最近的曼哈顿距离
 
曼哈顿距离: 定义两点( x i x_i xi, y i y_i yi), ( x j x_j xj, y j y_j yj)之间的距离: d ( i , j ) = ∣ x i − x j ∣ + ∣ y i − y j ∣ d(i, j) = |x_i-x_j| + |y_i-y_j| d(i,j)=xixj+yiyj
 
样例1:
输入样例:

5 6 15
##.T##
.#.#.#
.....#
####.#
S.....

输出样例:

2 

说明:

5 6 8
##.T##
.#.#7#
....6#
####5#
S1234. 

经过 7 步,Syuggie停在了耳机右下角的格子,开始听歌。这个位置与耳机所在位置的曼哈顿距离为 ( 1 ) + ( 1 ) = 2 (1)+(1)=2 (1)+(1)=2
样例2:
输入样例:

6 6 10
..#..S
..#...
..#...
##.###
..#...
....T.

输出样例:

3

样例3:
输入样例:

5 6 15
##.T##
.#.#.#
.....#
####.#
S.....

输出样例:

0

解题思路:
输入迷宫的同时记录 Syuggie 的位置和耳机所在位置,为之后作为BFS起点和求曼哈顿距离做准备。在BFS时将符合要求的坐标入队,同时记录步数。最重要的其实是对每个坐标对应步数小于 k 的求与耳机的曼哈顿距离

#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> PII;
map<PII, int> dis;

const int N = 1e3+10;
char mp[N][N];
int tx, ty;

int n, m, k;
int mn = 3*N;
int dx[] = {0, 1, -1, 0};
int dy[] = {1, 0, 0, -1};

bool judge(int x, int y) //判断是否符合坐标要求(能够移动到的点)
{
    if((x>=0 && x<n) && (y>=0 && y<m) && mp[x][y]!='#')
        return true;
    return false;
}

void bfs(int x, int y)
{
    mp[x][y] = '#';
    dis[{x, y}] = 0;
    queue<PII> q;
    q.push({x, y});
    while(!q.empty())
    {
        PII p = q.front();
        q.pop();
        int sx = p.first;
        int sy = p.second;
        //步数符合要求的就求曼哈度距离
        if(dis[{sx, sy}] <= k) mn = min(mn, abs(sx-tx)+abs(sy-ty));
        for(int i=0; i<4; i++)
        {
            int nx = sx+dx[i];
            int ny = sy+dy[i];
            if(judge(nx, ny))
            {
                mp[nx][ny] = '#';
                dis[{nx, ny}] = dis[{sx, sy}]+1; 
                q.push({nx, ny});
            }
        }
    }
}

int main()
{
    int x, y;
    cin>>n>>m>>k;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            cin>>mp[i][j];
            if(mp[i][j] == 'S')
            {
                x = i;
                y = j;
            }
            if(mp[i][j] == 'T')
            {
                tx = i;
                ty = j;
            }
        }  
    
    bfs(x, y);
    cout<<mn<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生ono

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值