anaconda虚拟环境pytorch安装

1.先创建conda的虚拟环境

conda create -n gputorch python==3.10

2.激活刚刚创建好的虚拟环境

conda activate gputorch

3.设置国内镜像源

修改anaconda的源,即修改.condarc配置文件

.condarc在 home/用户/user/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
# 设置搜索时显示通道地址 从channel中安装包时显示channel的url,这样就可以知道包的安装来源
conda config --set show_channel_urls yes

安装时,去掉-c pytorch

4.查看电脑的显卡驱动版本

在cmd命令窗口中输入nvidia-smi
在这里插入图片描述
如图,CUDA为12.3

5.安装

在这里插入图片描述
在命令窗口中直接输入命令–回车安装

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
  • 方法2:本文使用的pytorch版本是torch==2.2.2,检索历史记录可以找到这个版本,并且它的CUDA版本要求是12.1(我是12.3)因此可以兼容。如果CUDA版本达不到要求,又想用论文项目对应的pytorch,可以选择CPU训练。

注意:这里查看一下,自己的显卡驱动所能支持的版本,我这显卡驱动支持cuda12.3,所以我安装的cuda和pytorch都很新,你只需要根据自己需要更改版本就好了。

# CUDA 12.1
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia

注意:以镜像源安装时,去掉-c pytorch。-c pytorch意思是使用pytorch官方源,这很慢。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
下载时间会有一点久,耐心等待……

注意:Pytorch官网首页目前只更新到支持DUDA12.1的,还没更新到支持CDUA12.3 GPU的安装,官网首页的命令安装后只支持CPU。使用的文中这个末尾带nvidia的之前版本的命令,安装后CUDA12.3可正常在环境中使用GPU的Pytorch。

在这里插入图片描述
成功!

6.验证PyTorch是否安装成功

  • 检查版本信息:在Python环境中运行以下代码来打印出已安装的PyTorch版本
import torch
print(torch.__version__)
  • 执行简单计算:使用PyTorch进行一些基本的操作,如创建张量(tensor)并执行加法操作。这可以确保库的基本功能可用。
#python
import torch
x = torch.rand(5, 3)
y = torch.rand(5, 3)
z = x + y
print(z)
  • 测试GPU支持(如果有)

如果你的系统配置有NVIDIA GPU并安装了CUDA以利用GPU加速,那么可以测试PyTorch是否能识别到GPU。运行以下代码:

#python
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
  • 查看CUDA和CUDNN信息

如果你想进一步确认CUDA和cuDNN的支持情况,你可以在Python shell中输入以下命令:

#python
import torch
print("CUDA available:", torch.cuda.is_available())
print("cuDNN enabled:", torch.backends.cudnn.enabled)

以上就是验证PyTorch是否安装成功的常用方法。
在这里插入图片描述

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 安装PyTorch的最佳方式是使用Anaconda虚拟环境。以下是安装步骤: 1. 首先,下载并安装Anaconda。可以从Anaconda官网下载适合自己操作系统的版本。 2. 打开Anaconda Navigator,点击“Environments”选项卡,然后点击“Create”按钮创建一个新的虚拟环境。 3. 在创建虚拟环境时,可以选择Python版本和包含的库。建议选择Python 3.x版本,并在“Search Packages”搜索“pytorch”并选择需要的版本。 4. 点击“Create”按钮创建虚拟环境。创建完成后,可以在“Environments”选项卡看到新创建的虚拟环境。 5. 点击新创建的虚拟环境,然后点击“Open Terminal”按钮打开终端。 6. 在终端输入以下命令安装PyTorch: conda install pytorch torchvision -c pytorch 7. 安装完成后,可以在Python导入PyTorch并开始使用。 希望这些步骤对您有所帮助! ### 回答2: anaconda是一款非常实用的虚拟环境管理工具,而pytorch则是近年来备受热捧的深度学习框架。安装pytorchanaconda虚拟环境可以提高开发效率,同时也能更好地管理不同项目所需的不同python版本和依赖库。 以下是anaconda虚拟环境安装pytorch的具体步骤: 1. 安装anaconda:首先需要下载anaconda安装,可在官网上下载合适的版本。 2. 创建虚拟环境:在terminal或者anaconda prompt输入下列代码创建一个虚拟环境。 conda create -n pytorch-env python=3.8` 3. 激活虚拟环境:创建完虚拟环境后,在terminal或者anaconda prompt输入如下命令,激活虚拟环境。 conda activate pytorch-env 4. 安装pytorch:在激活的虚拟环境,使用conda或者pip工具安装pytorch。在anaconda prompt输入以下命令即可安装CPU版本的pytorch: conda install pytorch torchvision torchaudio -c pytorch 5. 对于GPU版本的pytorch安装,首先需要进行CUDA相关的安装步骤。可以在官网上获取相关的指引,并在安装完成后指定安装版本。在anaconda prompt输入以下命令即可安装GPU版本的pytorch: conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch 6. 检查是否安装成功:在激活虚拟环境的情况下,在terminal或者anaconda prompt输入python命令打开python shell,然后输入import torch命令。若能顺利导入,则说明安装成功。 综上所述,使用anaconda虚拟环境安装pytorch可以提高开发效率和方便管理,并且在安装时也需要注意一些细节和版本相关的问题。 ### 回答3: 在进行 PyTorch安装之前,我们需要先安装 Anaconda3,因为 Anaconda 将会提供我们创建虚拟环境的能力。我们可以从官网下载 Anaconda3 的安装程序,并进行安装。 然后,我们需要在命令行窗口输入以下命令来创建一个名为“pytorch-env”的 PyTorch 虚拟环境: conda create -n pytorch-env python=3.7 这将会创建一个虚拟环境,并在其安装 Python 3.7。我们可以使用以下命令来激活这个虚拟环境: conda activate pytorch-env 现在,我们可以尝试在虚拟环境安装 PyTorch。我们可以从官网上找到安装 PyTorch 的命令。例如,我们可以使用以下命令安装 CPU 版本的 PyTorch: conda install pytorch torchvision cpuonly -c pytorch 如果需要安装 GPU 版本的 PyTorch,则需要使用以下命令: conda install pytorch torchvision cudatoolkit=10.1 -c pytorch 这将会安装 PyTorchtorchvision,并且需要根据具体的硬件环境来选择是否安装 CPU 版本或者 GPU 版本。安装完成后,我们可以在 Python 的交互式环境尝试导入 PyTorch: import torch 如果没有出现错误信息,则说明 PyTorch 已经成功安装。我们可以开始使用 PyTorch 进行深度学习的开发工作。 总结一下,安装 PyTorch 的步骤包括以下几个方面:首先安装 Anaconda3,然后使用 conda 命令创建一个 PyTorch 虚拟环境,最后在虚拟环境使用 conda 命令安装 PyTorch。这些步骤可以帮助我们快速、方便地安装 PyTorch,并且可以确保在不同的项目使用不同版本的 PyTorch,避免了不同项目间版本冲突的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值