transforms主要作用是对图片进行变换
可以使用PyCharm界面左侧的structure按钮查看transforms的结构:由许多类定义组成的模块。
1. transforms被如何使用(python)
在transforms中选择一个class,对它进行创建,根据创建的实例,查看需要的输入参数,最后返回结构。
from PIL import Image
from torchvision import transforms
img_path="data/train/ants_image/0013035.jpg"
img=Image.open(img_path)
tensor_trans=transforms.ToTensor()
tensor_img=tensor_trans(img)
print(tensor_img)
将图片类型转换tensor
在函数的引用括号里按Ctrl+P可以显示函数需要传入什么参数及参数类型(P代表parameter)
2. 为什么我们需要Tensor数据类型
- 查看tensor数据类型的一些相关信息,可以理解为包含了神经网络理论基础的一些参数的数据类型。
用opencv读取ndarray类型的数据
import cv2
cv_img=cv2.imread(img_path)
小结:目前学过的3种打开图片并往SummaryWriter类传参的方式:
- PIL.Image.open打开,np.array转换
- PIL.Image.open打开,transforms.ToTensor转换
- opencv打开(这个打开就是ndarray类型)
3.常见的Transforms
Python的内置函数中的__call__的用法:
- Compose:组合transforms中的多个类(多个工具)
Python类的魔法方法,可以让实例接收参数并被调用
- ToTensor:
将PIL Image和numpy.ndarray类型转换为tensor类型
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer =SummaryWriter("logs")
img=Image.open("images/90179376_abc234e5f4.jpg")
print(img)
#ToTensor
trans_totensor =transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image( "ToTensor", img_tensor)
writer.close()
- Normalize:
对图片进行归一化的变换,具体效果见代码,注意计算公式
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer =SummaryWriter("logs")
img=Image.open("images/90179376_abc234e5f4.jpg")
print(img)
#Normalize
print(img_tensor[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm=trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.close()
- Resize:
作用是改变图片的尺寸,输入是PIL Image,输出同样是PIL Image。
PyCharm小技巧:
# Resize
print(img.size)
trans_resize = transforms.Resize((512, 512))
# img PIl>resize >img_resize PIl
img_resize = trans_resize(img)
# img_resize pIl ->totensro -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize)
print(img_resize)
- Compose(使用):
传入的参数是一个由transfroms这个模块中类的实例组成的列表。
#Compose
trans_resize_2=transforms.Resize(512)
# PIL ->PIL -> tensor
trans_compose=transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2=trans_compose(img)
writer.add_image("Compose",img_resize_2,1)
- RandomCrop:
随机裁剪的尺寸大小不能小于图片的尺寸,否则会报错。
总结使用方法:
- 关注输入和输出类型
- 关注官方文档
- 关注方法需要什么参数
- 不知道返回值类型的时候可以试错或者搜索
- print
- print(type())
- debug