0、综述
滑动窗口的长度不一定是固定的,只要满足窗口的左右端点是递增的即可。
1、最大子序和
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 300010, INF = 1e9;
int n, m;
int s[N];
int q[N];
int main()
{
//本题的数据集是前缀和
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &s[i]), s[i] += s[i - 1];
int res = -INF;
//tt=0 表示涵盖了一个元素 s[0]
int hh = 0, tt = 0;
//枚举结尾元素 a[k]
for (int i = 1; i <= n; i ++ )
{
//为什么是i-m 不是i-m+1
//例如末尾元素下标是5,区间长度为2。则左端点是5-2+1=4
//而求4,5的元素和 则需要 s[5]-s[3] 则不需要+1。
if (q[hh] < i - m) hh ++ ;
//为什么先更新最大值,再更新数据s[k]
//因为求的是前缀和,即使区间长度为1,也不需要纳入s[k],仅需要s[k-1]
//若要更新后再求最大值可能出现s[k]-s[k]的情况 则先求res,再更新。
res = max(res, s[i] - s[q[hh]]);
while (hh <= tt && s[q[tt]] >= s[i]) tt -- ;
q[ ++ tt] = i;
}
printf("%d\n", res);
return 0;
}
2、修剪草坪
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
//e比较大
typedef long long LL;
const int N = 1e5 + 10;
int n, m;
LL s[N];
LL f[N];
int q[N];
LL g(int i)
{
if (!i) return 0;
return f[i - 1] - s[i];
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
{
scanf("%lld", &s[i]);
s[i] += s[i - 1];
}
int hh = 0, tt = 0;
//i枚举的是终点
for (int i = 1; i <= n; i ++ )
{
//需要找的是g[] [i - m, i - 1]中的最大值
if (q[hh] < i - m) hh ++ ;
f[i] = max(f[i - 1], g(q[hh]) + s[i]);
while (hh <= tt && g(q[tt]) <= g(i)) tt -- ;
q[ ++ tt] = i;
}
printf("%lld\n", f[n]);
return 0;
}
3、旅行问题(最大子序和扩展到环形)
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
//破环成链 需要扩展为2倍
const int N = 2e6 + 10;
int n;
//有料和距离
int oil[N], dist[N];
//前缀和
LL s[N];
//队列
int q[N];
bool ans[N];
//先顺时针做一遍,再逆时针做一遍
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ )
{
scanf("%d%d", &oil[i], &dist[i]);
s[i] = s[i + n] = oil[i] - dist[i];
}
for (int i = 1; i <= n * 2; i ++ ) s[i] += s[i - 1];
int hh = 0, tt = 0;
//顺时针做
q[0] = n * 2 + 1;
//i是起点-1(左端点) i+n终点(右段点)
//实际上起点位于1~n之间,n~2n是为了预处理数据,找出其中的最小值
//s[j]-s[i](此处真正的起点坐标是i+1)
for (int i = n * 2; i >= 0; i -- )
{
//由于i代表起点-1,则i+n表示终点
//q[hh]>i+n 抛出头
if (q[hh] > i + n) hh ++ ;
//起点位于1~n之间
//i表示 起点减1 ,i<n时起点位于1~n之间
//例如 起点坐标是n,则计算前缀和需要s[j]-s[n-1].
if (i < n)
{
//i表示起点-1,i+1表示起点
//i表示起点减1 则真正的起点为i+1
if (s[i] <= s[q[hh]]) ans[i + 1] = true;
}
//为什么先判断ans,再更新。
//此时的i是否加入单调队列更新ans[i+1]?
//因为此处i表示起点-1 s[j]-s[i] j应该是从s[i+1]~s[i+n]中的min
//则不需要更新,需要先判断ans
while (hh <= tt && s[q[tt]] >= s[i]) tt -- ;
q[ ++ tt] = i;
}
//逆时针做
//oil[i]表示每一个站点的油料
//dist表示顺时针从一个站点到下一个站点的距离
//逆时针表示从本站点到上一个站点的距离是dist[i-1]
//例如2号点到3号点的距离是dist[2],而2号点到1号点的距离是dist[1]
//特例:从n号点到1号点的距离dist[n],逆时针 从1号点到n哈点的距离dist[0]
//dist[0]没有初值,但是在数值上与dist[n]一致
dist[0] = dist[n];
for (int i = 1; i <= n; i ++ ) s[i] = s[i + n] = oil[i] - dist[i - 1];
for (int i = 1; i <= n * 2; i ++ ) s[i] += s[i - 1];
//逆时针的时候 起点是在n+1~2n中 1~n中是为了预处理数据
//终点在前,起点在后。s[i]-s[j],s[i]是定值,s[j]max
hh = 0, tt = 0;
q[0] = 0;
for (int i = 1; i <= n * 2; i ++ )
{
//i是起点(右段点)i-n+1 是左端点(终点)i-n是左端点前一个位置
//为前缀和做铺垫
if (q[hh] < i - n) hh ++ ;
//起点位于 n+1~2n
if (i > n)
{
//为什么-n,因为数组长度多扩展了一倍
if (s[i] >= s[q[hh]]) ans[i - n] = true;
}
//为什么i不纳入更新s[j]
//从全局公式来开 s[i]-s[j] j的取值范围应该是从i-1~i-n
//则i不应该纳入更新ans
while (hh <= tt && s[q[tt]] <= s[i]) tt -- ;
q[ ++ tt] = i;
}
for (int i = 1; i <= n; i ++ )
if (ans[i]) puts("TAK");
else puts("NIE");
return 0;
}
4、烽火传递
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10, INF = 1e9;
int n, m;
int w[N], q[N];
//f[i]
//1-i中不包含连续m个没有点火的烽火台,
//且点燃第i个烽火台的所有方案
int f[N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
//f[0]=0
int hh = 0, tt = 0;
//f[i] 枚举当点燃第i个烽火台时,前m个烽火台 i-m到i-1个烽火台中
//点燃哪一个可以使代价最小 此处枚举的时是燃第i个烽火台
for (int i = 1; i <= n; i ++ )
{
//j<i,j>=i-m 则此处可以等于i-m
if (q[hh] < i - m) hh ++ ;
//点燃第i个烽火台的最小代价是点燃前f[i-m]到f[i-1]中一个烽火台最小代价
//加上点燃第i个烽火台的代价
f[i] = f[q[hh]] + w[i];
//最小代价 单调递增 队头是最小值
//为什么先对f[i]赋值,再更新?
//因为此时求的是点燃f[i]的最小代价,
//点燃f[i]的最小代价需要f[i-1]到f[i-m]点燃一个烽火台的最小代价
//因此f[i]赋值后再继续更新。
while (hh <= tt && f[q[tt]] >= f[i]) tt -- ;
q[ ++ tt] = i;
}
int res = INF;
//枚举点燃最后m个烽火台中的任何一个,看看点燃哪一个代价最小。
for (int i = n - m + 1; i <= n; i ++ ) res = min(res, f[i]);
printf("%d\n", res);
return 0;
}
5、绿色通道(二分)
二分的本质是前一半满足这个性质,后一半不满足这个性质
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 50010, INF = 1e9;
int n, m;
int w[N];
//这里要求最长只能有k个连续的空格,
//因此需要在[i - k - 1, i - 1]中找最小值。
//f[i]表示写第i道题目,且前i道题目中最长空格数量
//不超过k的所有方案中的最小花费时间。
int f[N], q[N];
bool check(int k)
{
f[0] = 0;
int hh = 0, tt = 0;
for (int i = 1; i <= n; i ++ )
{
if (hh <= tt && q[hh] < i - k - 1) hh ++ ;
f[i] = f[q[hh]] + w[i];
while (hh <= tt && f[q[tt]] >= f[i]) tt -- ;
q[ ++ tt] = i;
}
int res = INF;
for (int i = n - k; i <= n; i ++ ) res = min(res, f[i]);
return res <= m;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
int l = 0, r = n;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
printf("%d\n", r);
return 0;
}
6、理想的正方形(滑动窗口扩展到2维)
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010, INF = 1e9;
//k表示正方的边长 nm表示矩形的行和列
int n, m, k;
int w[N][N];
//行方向上的最大值和最小值
int row_min[N][N], row_max[N][N];
int q[N];
//tot 长度
void get_min(int a[], int b[], int tot)
{
int hh = 0, tt = -1;
for (int i = 1; i <= tot; i ++ )
{
//<=i-k i-k+1~i
if (hh <= tt && q[hh] <= i - k) hh ++ ;
while (hh <= tt && a[q[tt]] >= a[i]) tt -- ;
q[ ++ tt] = i;
//为什么先迭代单调队列 后更新数据
//因为a[i]需要加入其中
b[i] = a[q[hh]];
}
}
void get_max(int a[], int b[], int tot)
{
int hh = 0, tt = -1;
for (int i = 1; i <= tot; i ++ )
{
if (hh <= tt && q[hh] <= i - k) hh ++ ;
while (hh <= tt && a[q[tt]] <= a[i]) tt -- ;
q[ ++ tt] = i;
b[i] = a[q[hh]];
}
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &w[i][j]);
//预处理出每一行的最值
for (int i = 1; i <= n; i ++ )
{
//w[][] w[i]是传入每一行的数值
//row_min[][] row_min[]是存储长度为正方形大小(k)
//中的最小值 将正方形中每一行的最值压缩到最右侧的结果
//m是每一行的长度
get_min(w[i], row_min[i], m);
get_max(w[i], row_max[i], m);
}
//做完行之后,枚举每一列
int res = INF;
int a[N], b[N], c[N];
for (int i = k; i <= m; i ++ )
{
//之前将正方形中的最值压缩到正方形的最右侧
//现在将正方形的最有侧存到一个数组中
//a是存放最右侧一列的数据 b是最小值 c是最大值
for (int j = 1; j <= n; j ++ ) a[j] = row_min[j][i];
get_min(a, b, n);
for (int j = 1; j <= n; j ++ ) a[j] = row_max[j][i];
get_max(a, c, n);
for (int j = k; j <= n; j ++ ) res = min(res, c[j] - b[j]);
}
printf("%d\n", res);
return 0;
}