基础线段树数据结构

1.线段树概念

线段树简单来说就是仅通过一个数组来描述一棵树。数组中每个元素存储树中对应节点存储的信息,不存储描述树的层次结构的信息。

注:这和树状数组的描述很像,因为线段树是一棵平衡二叉树(具体证明不在此演示)不需要特定存储层次结构信息,树状数组的父子节点具有特殊的与关系,也不需要存储特定的层次结构信息。

2.线段树的存储

2.1 线段树的核心性质

  1. (每个节点存储着一个区间的区间和) 每个线段树节点存储两个边界值,表示区间的左右边界,除此之外应存储一个区间和变量,用于记录区间的和,当前节点的区间和等于左右孩子的区间和之和。

  2. (每个节点的左子节点是2倍该节点编号,右子节点是2被该节点编号加1) 线段树是平衡二叉树,按照编号规则容易得出该结论。假设当前节点编号为k那么左孩子的节点编号是2 * k那么右孩子的节点的编号是2 * k + 1

  3. (每个节点要么有2个子节点,要么没有子节点) 不考虑特殊线段树的“假孩子”的情况,基础的线段树的节点要么有两个子节点,要么没有子节点。因为节点代表一个区间,一个区间要么可以分成两个子区间,要么不能再分,左边界等于右边界。

  4. (由n个元素的数列产生的线段树一共有2n-1个节点) 该结论可以由数学归纳法等方法证明 (本人不做竞赛,在此暂不深究)

  5. (由n个元素的数列产生的线段树占用的空间最坏在4n级别) 虽然节点数是2n级别,但是注意线段树实际占用的空间不是2n级别的。选择不同策略创建出的线段树是不一样的,例如下文在建立线段树时选择将mid划分到左子区间中,这样最终线段树的结果为:如果为满二叉树,那么最后一层全为叶子结点。如果不是满二叉树,那么最后一层的叶子结点可能会靠左也可能会靠右,如果靠在右边,那么会造成空间浪费。可以看到下述情况的第一幅图就浪费了空间,8-11号节点并没有存储任何内容,此时的编号是13,已经超过了2n级别的存储空间。

    在这里插入图片描述

    在这里插入图片描述

2.2 线段树的数据结构描述

typedef struct Node {
    // 左右区间
	int l, r;
    // 节点懒惰标记(下文介绍),区间和
	int lazy, sum;
	Node() {
		this->l = 0;
		this->r = 0;
		this->lazy = 0;
		this->sum = 0;
	}
	Node(int l, int r, int lazy, int sum) {
		this->l = l;
		this->r = r;
		this->lazy = lazy;
		this->sum = sum;
	}
}Node;

// 存储线段树的数组
Node nodes[10000];

2.3 线段树的创建

给出一个数列ar,根据此创建一棵线段树。

ar = [1, 5, 4, 2, 3]

特别注意:这里的特别注意与“树状数组数据结构”这篇博客中的特别注意相同,存储线段树的数组下标应该从1开始,否则从0开始时计算左孩子和右孩子的下标时会一直为0。另外区间的表示也要从1开始,因此原数列的存储下标最好也是从1开始。

类比:由下面的步骤可以看出,线段树的创建是“根左右”的顺序,类似于“树的先序遍历”。但是在更细区间和的值的时候是“左右根”的顺序,类似于“树的后序遍历”。

第一步: 创建根节点,区间为整个区间,即数列的第一个元素到最后一个元素。区间和暂时未知,lazy标记在创建时不会使用,不用考虑。根节点的编号是1。

在这里插入图片描述

第二步: 当前节点的区间不是最小区间(左边界等于右边界),因此先创建当前节点的左子节点。左子节点的区间仍不是最小区间,所以当前的区间和仍然未知。

在这里插入图片描述

第三步: 当前节点的区间不是最小区间(左边界等于右边界),因此先创建当前节点的左子节点

在这里插入图片描述

第四步: 创建当前节点的左子节点,创建的节点的区间是最小区间,即左边界等于右边界。此时取原数列获取对应下标的元素值,ar[1] = 1, 因此8号节点的区间和是1。

在这里插入图片描述

第五步: 8号节点是最小区间,没有左孩子也没有右孩子,因此回溯到4号节点。4号节点的左孩子已经创建完毕,此时创建右孩子。发现右孩子的区间也是最小区间,因此知道区间和。

在这里插入图片描述

第六步: 9号节点没有左孩子右孩子,回溯到4号节点,因为4号节点的左右孩子都创建完毕,所以可以按照2.1中提到的核心性质更新4号节点的区间和为左孩子的区间和加上右孩子的区间和。

在这里插入图片描述

第七步: 4号节点的左右孩子已经创建完毕,并且已经更新了区间和的值,4号节点已经彻底创建完毕,此时回溯到2号节点。2号节点接着创建右孩子。因为新创建的右孩子的区间是最小区间,因此知道区间和的值。

在这里插入图片描述

**第八步:**回溯到2号节点,更细2号节点的区间和的值,为左右孩子的区间和的和,此时已经知道4号和5号节点的区间和,因此可以直接更新2号节点的区间和。

在这里插入图片描述

第九步: 2号节点已经创建完毕,回溯到1号节点,接着创建1号节点的右孩子。

在这里插入图片描述

第十步: 因为3号节点的区间不是最小区间,所以有孩子,因此接着创建3号节点的左孩子。发现3号节点的左孩子6号节点的区间是最小区间,因此直接查找原数列,获取区间和,就是ar[4]的值。

在这里插入图片描述

第十一步: 6号节点创建完毕后回溯到3号节点,3号节点接着创建右孩子7号节点。7号节点的区间也是最小区间,因此直接可得出区间和。

在这里插入图片描述

第十二步: 7号节点创建完毕,回溯到3号节点,更新3号节点的区间和。

在这里插入图片描述

第十三步: 3号节点已经彻底创建完毕,回溯到1号节点,并更新1号节点的区间和。至此线段树创建完毕。

在这里插入图片描述

3.线段树的基本功能

3.1 概述

  1. changePoint修改某个点的值,以O(logn)的复杂度从根节点找到该节点进行修改,再以O(logn)的复杂度回溯,更新路径上的节点的区间和。
  2. changeSeg修改一段区间上所有点的值,以O(logn)的复杂度从根节点找到表示该区间的节点,根据修改类型给区间更新lazy标记,再以O(logn)的复杂度回溯,更新路径上的节点的区间和。
  3. query查询一段区间的区间和,以O(logn)的复杂度从根节点找到表示该区间的节点,返回该节点的区间和。如果在寻找路径上发现某些节点的lazy标记不是0,那么进行lazy标记下传操作。
  4. pushdown将当前节点的lazy标记下传给当前节点的两个孩子节点,并更新孩子的区间和。结束后将自己的lazy标记设置为0。

3.2 线段树的创建

下述代码对应2中的示例。

特别注意:在下述代码中“创建左孩子时”把mid划分到了左孩子中,也就是说讲一个区间划分为两个小区间时,中间点属于左小区间。这看起来好像不值得注意,但是在之后涉及到的区间修改,单点修改,区间查询时都要注意,在区间划分时也要遵循这个相同的规则。

3.2.1 算法流程描述

(1)更新当前节点的左右区间值

(2)递归边界:如果是最小区间的节点,直接更新区间和并返回

(3)递归生成左孩子,mid值划分给左区间

(4)递归生成右孩子

(5)回溯时更细当前节点的区间和

#include <iostream>
using namespace std;

typedef struct Node {
	int l, r, sum, lazy;
	Node() {
		this->sum = 0;
		this->lazy = 0;
	}
	Node(int l, int r) {
		this->l = l;
		this->r = r;
	}
}Node;

// 线段树节点数量是2n-1
Node nodes[10];
// 原数列从1开始计数,此数列长度为5,即n=5
int ar[6] = {0, 1, 5, 4, 2, 3};

// 当节点的左右孩子创建完毕后调用update函数更新自己的区间和
void update(int k) {
	nodes[k].sum = nodes[2 * k].sum + nodes[2 * k + 1].sum;
}

// 创建线段树,第一个参数是当前线段树中的节点的编号,第二三个参数是当前线段树中的节点要存储的区间的左右边界
void build(int k, int l, int r) {
	nodes[k].l = l;
	nodes[k].r = r;
	int mid = (l + r) >> 1;
    // 如果节点的区间是最小区间,直接获取区间和
	if(l == r) {
		nodes[k].sum = ar[l];
		return;
	}
    // 先创建左孩子
	build(2 * k, l, mid);
    // 再创建右孩子
	build(2 * k + 1, mid + 1, r);
    // 创建完孩子后更新当前节点的前缀和
	update(k);
} 

int main() {
    // 从线段树的第一个节点开始创建,根节点编号为1
	build(1, 1, 5);
	
	for(int i = 1; i <= 9; i ++) 
		cout << "当前节点编号为:" << i << " 当前节点的区间左边界为:" << nodes[i].l << " 当前节点的区间右边界为:" << nodes[i].r << " 当前节点的区间的区间和为:" << nodes[i].sum << endl;
}

// 当前节点编号为:1 当前节点的区间左边界为:1 当前节点的区间右边界为:5 当前节点的区间的区间和为:15
// 当前节点编号为:2 当前节点的区间左边界为:1 当前节点的区间右边界为:3 当前节点的区间的区间和为:10
// 当前节点编号为:3 当前节点的区间左边界为:4 当前节点的区间右边界为:5 当前节点的区间的区间和为:5
// 当前节点编号为:4 当前节点的区间左边界为:1 当前节点的区间右边界为:2 当前节点的区间的区间和为:6
// 当前节点编号为:5 当前节点的区间左边界为:3 当前节点的区间右边界为:3 当前节点的区间的区间和为:4
// 当前节点编号为:6 当前节点的区间左边界为:4 当前节点的区间右边界为:4 当前节点的区间的区间和为:2
// 当前节点编号为:7 当前节点的区间左边界为:5 当前节点的区间右边界为:5 当前节点的区间的区间和为:3
// 当前节点编号为:8 当前节点的区间左边界为:1 当前节点的区间右边界为:1 当前节点的区间的区间和为:1
// 当前节点编号为:9 当前节点的区间左边界为:2 当前节点的区间右边界为:2 当前节点的区间的区间和为:5

3.3 线段树单点修改

3.3.1 算法流程描述

(1)递归边界:如果到达最小区间节点,那么找到目标节点,修改后返回

(2)如果目标节点大于当前区间的中间值,那么去当前区间的右子区间寻找

(3)如果目标节点小于等于当前区间的中间值,那么去当前区间的左子区间寻找

(4)修改完毕回溯时更新当前路径上的节点的区间和

void changePoint(int k, int x, int y) {
	int mid = (nodes[k].l + nodes[k].r) >> 1;
    // 如果到达最小区间,那么找到该点
	if(nodes[k].l == nodes[k].r)
		nodes[k].sum += y;
	if(x > mid)
        // 当前点的位置属于当前区间的右小区间
		changePoint(2 * k + 1, x, y);
	else
        // 当前点的位置属于当前区间的左小区间(遵循了3.2中mid划分给左小区间的规则)
		changePoint(2 * k, x, y);
    // 如果修改完毕后,在回溯过程中更新路径上的点的值
	update(k);
}

3.4 线段树区间修改

3.4.1 算法流程描述

(1)递归边界:当前区间等于目标区间,那么直接打标记,更新区间和后退出

(2)下传标记

(3)如果目标区间完全位于当前区间的右小区间,那么去右小区间寻找目标区间

(4)如果目标区间完全位于当前区间的左小区间,那么去左小区间寻找目标空间

(5)如果目标空间跨域了当前区间的左小区间和右小区间,那么分别去这两个小区间寻找分割的目标区间

(6)回溯时更新路径上的节点的区间和

3.4.2 lazy标记的解释

假设当前要求是,对某一个区间都加上一个数。

3.4.2.1 树状数组解决区间修改的做法:

树状数组的做法是节点存储差分值,当区间修改时,更新区间边界的差分值,不更新每一个点的值,更新操作的时间复杂度是O(1)。

在线段树中我们肯定也不能更新每个点的值,这样是一个O(n)的操作,加上线段树寻找节点还是O(logn)操作,更新每个点的值会非常耗时。

3.4.2.2 线段树解决区间修改的做法:

线段树当然不会对每个节点修改。当找到目标区间时,线段树不再向下寻找,线段树给当前表示目标区间的节点打上lazy标记。如果要求对目标区间加上y,那么当前节点的lazy标记值加上y。含义是:当前节点的区间和已经更新,但是子节点的区间和还没有更新,子节点的区间中每个节点的值都要加上当前节点的lazy的值。

3.4.2.3 标记下传:

当某次操作要修改一个lazy标记不为0的区间时,例如给该区间的所有数都加上x。那么此时要用到该区间子区间的值,此时必须下传lazy标记。

void changeSegment(int k, int l, int r, int y) {
    // 如果这是目标区间,那么直接修改区间和,并打标记,不再修改该区间下的节点
	if(nodes[k].l == l && nodes[k].r == r) {
		nodes[k].lazy += y;
		nodes[k].sum += (r - l + 1) * y;
		return;
	}
    
    // 下传标记
    if(nodes[k].lazy)
        pushdown(k);
	
    int mid = (nodes[k].l + nodes[k].r) >> 1;
    // 目标区间与当前区间有三种关系
	if(l > mid)
        // 目标区间完全位于当前区间的右小区间
		changeSegment(2 * k + 1, l, r, y);
	else if(r <= mid)
        // 目标区间完全位于当前区间的左小区间
		changeSegment(2 * k, l, r, y);
	else {
        // 目标区间跨越了当前区间的左小区间和右小区间
		changeSegment(2* k, l, mid, y);
		changeSegment(2 * k + 1, mid + 1, r, y);
	}
    // 修改完毕回溯时修改路径上的节点的区间和
	update(k);
}

3.5 线段树的区间查询

3.5.1 算法流程描述

(1)如果当前节点有不为0的lazy标记,把该标记传给子节点,更新子节点

(2)递归边界:如果当前区间等于目标区间,那么返回区间和

(3)根据当前区间和目标区间的三种关系,进行递归查找目标区间

int query(int k, int l, int r) {
    // 如果当前节点有不为0的lazy标记,
    // 那么必须把该标记传给子节点,更新子节点,因为查询的区间一定在当前区间的子区间中,必须进行更新
	if(nodes[k].lazy)
		pushdown(k);
	int mid = (nodes[k].l + nodes[k].r) >> 1;
    // 递归边界是找到目标区间
	if(l == nodes[k].l && r == nodes[k].r)
		return nodes[k].sum;
    // 目标区间和当前区间还是三种关系,已经在区间修改中介绍了
	if(l > mid) 
		return query(2 * k + 1, l, r);
	else if(r <= mid)
		return query(2 * k, l, r);
	else 
		return query(2 * k, l, mid) + query(2 * k + 1, mid + 1, r);
} 

3.6 线段树的标记下放

3.6.1 算法流程描述

(1)如果是最小区间节点,则取消标记并返回

(2)更新两个子节点的标记值,进行累加

(3)更新两个子节点的区间和,进行累加

(4)去除当前节点的标记值

void pushdown(int k) {
    // 如果当前节点是最小区间节点,那么取消lazy标记,有lazy标记没有作用
	if(nodes[k].l == nodes[k].r) {
		nodes[k].lazy = 0;
		return;
	}
	
    // 更新当前节点的左右子节点的lazy值
	nodes[2 * k].lazy += nodes[k].lazy;
	nodes[2 * k + 1].lazy += nodes[k].lazy;
	
    // 更新当前节点的左右子节点的区间和值
	nodes[2 * k].sum += nodes[k].lazy * (nodes[2 * k].r - nodes[2 * k].l + 1);
	nodes[2 * k + 1].sum += nodes[k].lazy * (nodes[2 * k + 1].r - nodes[2 * k].l + 1);
	
    // 当前节点的标记已经下传,可以去除标记
	nodes[k].lazy = 0; 
}

4.线段树的优势

注:相比树状数组,线段树的操作更加直观。

4.1 单点更新&区间查询

4.1.1 时间复杂度

单点更新时间复杂度:O(logn),区间查询时间复杂度:O(logn)

4.1.2 方法综述

单点更新时直接调用changePoint即可,区间查询时直接调用query即可

4.2 区间更新&单点查询

4.2.1 时间复杂度

区间更新时间复杂度:O(logn),区间查询时间复杂度:O(logn)

4.2.2 方法综述

区间更新时直接调用changeSeg即可,区间查询时直接调用query即可,左区间等于右区间

4.3 区间更新&单点查询

4.3.1 时间复杂度

区间更新时间复杂度:O(logn),区间查询时间复杂度:O(logn)

4.3.2 方法综述

区间更新时直接调用changeSeg即可,区间查询时直接调用query即可

5.线段树操作例题

5.1 区间修改&单点查询

P3368 【模板】树状数组 2

https://www.luogu.com.cn/problem/P3368

注:不使用树状数组时,使用线段树,这里常规scanf或者cin会tle,得加上快读,擦边ac。

#include <iostream>
using namespace std;

typedef long long ll;

typedef struct Node {
	int l, r;
	ll sum, lazy;
	Node() {
		this->sum = 0;
		this->lazy = 0;
	}
}Node;

const int limit = 500001;
Node nodes[4 * limit];
ll ar[limit];

inline long long read(){
	long long f=1,outt=0;char a=getchar();
	while(a>'9'||a<'0'){if(a=='-')f=-1;a=getchar();}
	while(a<='9'&&a>='0'){outt*=10;outt+=a-'0';a=getchar();}
	return f*outt;
}

void update(int k) {
	nodes[k].sum = nodes[2 * k].sum + nodes[2 * k + 1].sum;
}

void build(int k, int l, int r) {
	nodes[k].l = l;
	nodes[k].r = r;
	if(nodes[k].l == nodes[k].r) {
		nodes[k].sum = ar[l];
		return;
	}
	int mid = (l + r) >> 1;
	build(2 * k, l, mid);
	build(2 * k + 1, mid + 1, r);
	update(k);
}

void pushdown(int k) {
	if(nodes[k].l == nodes[k].r) {
		nodes[k].lazy = 0;
		return;
	}
	
	nodes[2 * k].lazy += nodes[k].lazy;
	nodes[2 * k + 1].lazy += nodes[k].lazy;
	
	nodes[2 * k].sum += (nodes[2 * k].r - nodes[2 * k].l + 1) * nodes[k].lazy;
	nodes[2 * k + 1].sum += (nodes[2 * k + 1].r - nodes[2 * k + 1].l + 1) * nodes[k].lazy;
	
	nodes[k].lazy = 0;
}

void changeSeg(int k, int l, int r, int y) {
	if(nodes[k].l == l && nodes[k].r == r) {
		nodes[k].lazy += y;
		nodes[k].sum += y * (r - l + 1);
		return;
	}
	
	if(nodes[k].lazy)
		pushdown(k);
	
	int mid = (nodes[k].l + nodes[k].r) >> 1;
	if(l > mid)
		changeSeg(2 * k + 1, l, r, y);
	else if(r <= mid)
		changeSeg(2 * k, l, r, y);
	else {
		changeSeg(2 * k, l, mid, y);
		changeSeg(2 * k + 1, mid + 1, r, y);
	}
	update(k);
}

ll query(int k, int l, int r) {
	if(nodes[k].lazy) 
		pushdown(k);
	
	if(nodes[k].l == l && nodes[k].r == r) 
		return nodes[k].sum;
	
	int mid = (nodes[k].l + nodes[k].r) >> 1;
	if(l > mid)
		return query(2 * k + 1, l, r);
	else if(r <= mid)
		return query(2 * k, l, r);
	else
		return query(2 * k, l, mid) + query(2 * k + 1, mid + 1, r);
}

int main() {
	int n, m, op, l, r;
	ll y;
	cin >> n >> m;
	for(int i = 1; i <= n; i ++) 
		ar[i] = read();
	
	build(1, 1, n);
	
	for(int i = 0; i < m; i ++) {
		cin >> op;
		if(op == 1) {
			l = read();
			r = read();
			y = read();
			changeSeg(1, l, r, y);
		} else {
			l = read();
			cout << query(1, l, l) << endl;
		}
	}
}

5.2 区间修改&区间查询

P3372 【模板】线段树1

https://www.luogu.com.cn/problem/P3372

#include <iostream>
using namespace std;

typedef long long ll;

typedef struct Node {
	int l, r;
	ll sum, lazy;
	Node() {
		this->sum = 0;
		this->lazy = 0;
	}
}Node;


const int limit = 100001;
Node nodes[4 * limit];
ll ar[limit];

void update(int k) {
	nodes[k].sum = nodes[2 * k].sum + nodes[2 * k + 1].sum;
}

void build(int k, int l, int r) {
	nodes[k].l = l;
	nodes[k].r = r;
	if(nodes[k].l == nodes[k].r) {
		nodes[k].sum = ar[l];
		return;
	}
	int mid = (l + r) >> 1;
	build(2 * k, l, mid);
	build(2 * k + 1, mid + 1, r);
	update(k);
}

void pushdown(int k) {
	if(nodes[k].l == nodes[k].r) {
		nodes[k].lazy = 0;
		return;
	}
	
	nodes[2 * k].lazy += nodes[k].lazy;
	nodes[2 * k + 1].lazy += nodes[k].lazy;
	
	nodes[2 * k].sum += (nodes[2 * k].r - nodes[2 * k].l + 1) * nodes[k].lazy;
	nodes[2 * k + 1].sum += (nodes[2 * k + 1].r - nodes[2 * k + 1].l + 1) * nodes[k].lazy;
	
	nodes[k].lazy = 0;
}

void changeSeg(int k, int l, int r, int y) {
	if(nodes[k].l == l && nodes[k].r == r) {
		nodes[k].lazy += y;
		nodes[k].sum += y * (r - l + 1);
		return;
	}
	
	if(nodes[k].lazy)
		pushdown(k);
	
	int mid = (nodes[k].l + nodes[k].r) >> 1;
	if(l > mid)
		changeSeg(2 * k + 1, l, r, y);
	else if(r <= mid)
		changeSeg(2 * k, l, r, y);
	else {
		changeSeg(2 * k, l, mid, y);
		changeSeg(2 * k + 1, mid + 1, r, y);
	}
	update(k);
}

ll query(int k, int l, int r) {
	if(nodes[k].lazy) 
		pushdown(k);
	
	if(nodes[k].l == l && nodes[k].r == r) 
		return nodes[k].sum;
	
	int mid = (nodes[k].l + nodes[k].r) >> 1;
	if(l > mid)
		return query(2 * k + 1, l, r);
	else if(r <= mid)
		return query(2 * k, l, r);
	else
		return query(2 * k, l, mid) + query(2 * k + 1, mid + 1, r);
}

int main() {
	int n, m, op, l, r;
	ll y;
	cin >> n >> m;
	for(int i = 1; i <= n; i ++) 
		cin >> ar[i];
	
	build(1, 1, n);
	
	for(int i = 0; i < m; i ++) {
		cin >> op;
		if(op == 1) {
			cin >> l >> r >> y;
			changeSeg(1, l, r, y);
		} else {
			cin >> l >> r;
			cout << query(1, l, r) << endl;
		}
	}
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vanghua

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值