数据结构-线段树

线段树是一种满二叉树,用于高效处理区间查询和更新。非空叶子节点存储基础数据,父节点代表子节点的特定组合(如求和、最大值、最小值等)。构建线段树时,如果元素数量为2的k次方,空间需求约为2n,否则可能需要更多空间。通过两个数组实现原数组到线段树的转换,可用于解决区间问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 如上图:

线段树是一颗满二叉树,叶子节点如果没有值,用null表示。 非空叶子节点就是基础数据,树中每个父亲节点代表左右孩子的结果集(比如求合,最大值,最小值等,自己定义算法,传入左右孩子即可)。

那么有n个元素,构建线段树需要开辟多少空间?

对于满二叉树,每一层节点数量都是前面所有节点数量之和+1。 也就是说,如果最后一层有n个节点,整棵树就约为2n个节点。

如果此时n为2的k次方,所有元素刚好在最后一层,整棵树约就是2n。   如果再多一个元素,就需要开辟下一层空间,如上图那样,整棵树就需要开辟4n的空间。

构建线段树:

使用两个数组来构建线段树,一个数组表示原始数据,另一个数组表示线段树。

如上图所示,如果传入一个数组,如何把它构建为线段树? 

public class SegmentTree<E> {
    //存储数据
    private E[] data;
    //用数组表示树结构
    private E[] tree;
    //定义算法类,计算左右孩子的结果。 此例中为求合
    private Merger<E> merger;

    //外界传入一个数组arr,将它构建为线段树(每个树节点就是左右
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值