数据结构与算法(引入概念)

Why?

我们举一个可能不太恰当的例子:

如果将最终写好运行的程序比作战场,我们码农便是指挥作战的将军,而我们所写的代码便是士兵和武器。

那么数据结构和算法是什么?答曰:兵法!

引入

先来看一道题:

如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

第一次尝试

import time
# 一般人想法
start = time.time()
for a in range(1001):
    for b in range(1001):
        for c in range(1001):
            if a**2 + b**2 == c**2 and a+b+c == 1000:
                print('%d,%d,%d'%(a,b,c))
end = time.time()
print('所用时间:%s'%(end-start))

'''
运行结果:
0,500,500
200,375,425
375,200,425
500,0,500
所用时间:1298.273814201355

'''

注意运行时间:1299s

算法的提出

算法的概念

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。一个算法的优劣可以用空间复杂度时间复杂度来衡量。

算法是独立存在的一种解决问题的方法和思想。

对于算法而言,实现的语言并不重要,重要的是思想。

算法的五大特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

第二次尝试

import time
# a + b + c = 1000
# a <= 1000
# b <= 1000 - a
# c <= 1000 - a - b 
start = time.time()
# 两重循环
for a in range(1001):
    for b in range(1001-a):
        c = 1000 - a - b
        if a**2 + b**2 == c**2:
            print('%d,%d,%d'%(a,b,c))
end = time.time()
print('所用时间:%s'%(end-start))

'''
运行结果:
0,500,500
200,375,425
375,200,425
500,0,500
所用时间:0.680220365524292
'''

注意运行时间:0.68s

算法效率衡量

时间复杂度与“大O记法”

对于算法的时间效率,我们可以用“大O记法”来表示。

“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。

时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)

 

如何理解“大O记法”

对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。

最坏时间复杂度

分析算法时,存在几种可能的考虑:

  • 算法完成工作最少需要多少基本操作,即最优时间复杂度
  • 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  • 算法完成工作平均需要多少基本操作,即平均时间复杂度

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。

对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。

对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

 

时间复杂度的几条基本计算规则

  1. 基本操作,即只有常数项,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

算法分析

第一次尝试的算法核心部分

for a in range(0, 1001):
    for b in range(0, 1001):
        for c in range(0, 1001):
            if a**2 + b**2 == c**2 and a+b+c == 1000:
                print("%d, %d, %d" % (a, b, c))

T = 1000 * 1000 *1000*(max(1,0))  = 1000 ^ 3 

T(n) = n * n * n * (max(1,0)) = O(n^3)

时间复杂度:T(n) = O(n^3)

 

第二次尝试的算法核心部分

for a in range(0, 1001):
    for b in range(0, 1001-a):
        c = 1000 - a - b
        if a**2 + b**2 == c**2:
            print("%d, %d, %d" % (a, b, c))

T = 1000 * (1000-a) * (1+max(1,0)) = 1000 * (1000-a) * 2 = O(1000*1000) = O(1000^2)

T(n) = O(n^2)

时间复杂度:T(n) = O(n^2)

由此可见,我们尝试的第二种算法要比第一种算法的时间复杂度好多的。

常见时间复杂度

执行次数函数举例非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n^2+2n+1O(n^2)平方阶
5log2n+20O(logn)对数阶
2n+3nlog2n+19O(nlogn)nlogn阶
6n^3+2n^2+3n+4O(n^3)立方阶
2^nO(2^n)指数阶

注意,经常将log2n(以2为底的对数)简写成logn

常见时间复杂度之间的关系

 

所消耗的时间从小到大

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

Python内置类型性能分析

timeit模块

timeit模块可以用来测试一小段Python代码的执行速度。

class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)

Timer是测量小段代码执行速度的类。

stmt参数是要测试的代码语句(statment);

setup参数是运行代码时需要的设置;

timer参数是一个定时器函数,与平台有关。

timeit.Timer.timeit(number=1000000)

Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

list的操作测试

# coding=utf-8
from timeit import Timer

# list操作测试
def test1():
    l = []
    for i in range(10):
        l = l + [i]

def test2():
    l = []
    for i in range(10000):
        l.append(i)

def test3():
    l = [i for i in range(10000)]

def test4():
    l = list(range(10000))


# timeit(函数名_字符串,运行环境_字符串,number=运行次数)
t1 = Timer('test1()','from __main__ import test1')
print('+:',t1.timeit(number=1000),'s')
t2 = Timer('test2()','from __main__ import test2')
print('append:',t2.timeit(number=1000),'s')
t3 = Timer('test3()','from __main__ import test3')
print('列表生成式:',t3.timeit(number=1000),'s')
t4 = Timer('test4()','from __main__ import test4')
print('list():',t4.timeit(number=1000),'s')

'''
运行结果:
+: 96.5595060546576 s
append: 0.5754075709926951 s
列表生成式: 0.24559033513229167 s
list(): 0.1442200933084905 s
'''

list的append(value)和insert(0,value)测试:

# coding=utf-8
from timeit import Timer
def test5():
    l = []
    for i in range(10000):
        l.append(i)
def test6():
    l = []
    for i in range(10000):
        l.insert(0,i)


# pop 操作测试:
t1 = Timer('test5()','from __main__ import test5')
print('append(i)',t1.timeit(number=1000))
t2 = Timer('test6()','from __main__ import test6')
print('insert(0,i)',t2.timeit(number=1000))

'''
append(i) 0.5899517738268509
insert(0,i) 14.478126272180655
'''

结论:后面插入的时间远高于一个前面插入

list内置操作的时间复杂度

dict内置操作的时间复杂度

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值