(三十九):MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis

MISA是一个多模态情感分析框架,强调模态不变和特定表示学习以促进融合。通过学习共享的模态不变子空间和独立的模态特定子空间,MISA减少了模态间差异,增强了多模态数据的全面理解。在MOSI和MOSEI数据集上,MISA模型在情感分析任务上优于现有先进模型,并在UR_FUNNY数据集上表现出色,适用于多模态幽默检测。实验表明,正则化损失和子空间学习对模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 出处: ACM Multimedia 2020: 1122-1131

  • 主要内容:将多模态的表征分为特定模态的表征和模态不变的表征,最后通过attention融合去做情感分析。MISA 模型可分为三个模块: 特征提取模块(Feature Extraction),模态表征模块(Modality Representations),模态融合模块(Modality Fusion)特征提取模块:对文本使用预训练BERT提取特征,对图像和音频信号使用 Stack LSTM 学习上下文信息并获得对应模态的特征。模态表征模块:使用 Similarity Loss(CMD) 去约束三个模态达到同一个子空间并去学习三个模态共同的表征;使用 Difference Loss(正交度量)去学习每个模态特有的表征;使用 Reconstruction Loss 去重构模态的原始信息以确保模态在转换空间时丢失信息。模态融合模块:使用 transformer encoder 对模态的特征进行融合并拿此特征向量做最后的预测任务。

  • 实验代码:https://github.com/declare-lab/MISA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laura_Wangzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值