Python训练营打卡DAY29

DAY 29 复习日

知识点回顾

  1. 类的装饰器
  2. 装饰器思想的进一步理解:外部修改、动态
  3. 类方法的定义:内部定义和外部定义

作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分即将开启深度学习部分。

# 定义类装饰器:为类添加日志功能
def class_logger(cls):
    # 保存原始的 __init__ 方法
    original_init = cls.__init__

    def new_init(self, *args, **kwargs):
        # 新增实例化日志
        print(f"[LOG] 实例化对象: {cls.__name__}")
        original_init(self, *args, **kwargs)  # 调用原始构造方法

    # 将类的 __init__ 方法替换为新方法
    cls.__init__ = new_init

    # 为类添加一个日志方法(示例)
    def log_message(self, message):
        print(f"[LOG] {message}")

    cls.log = log_message  # 将方法绑定到类,这是一种将外部函数添加为类的属性的方法
    return cls

@class_logger
class Teacher:
    def __init__(self,name,age,lesson):
        self.name = name
        self.age = age
        self.lesson = lesson
    def teach(self):
        print(f"{self.name} 教 {self.lesson}")
    def __str__(self):
        return f"{self.name} {self.age} {self.lesson}"
teacher1 = Teacher("李老师",30,"数学")
teacher1.teach()
teacher1.__str__()
teacher1.log("这是装饰器添加的日志方法")  # 调用装饰器新增的方法

经历了一个月的学习,对于传统机器学习和python代码基础有了一定的了解和掌握,也在kaggle数据平台做了实战演练,虽很粗糙但也是自己所学。拿到数据先认识数据,对数据预处理(清洗异常值,填补空值,独热/标签编码,标准/归一化),处理数据集不平衡,特征筛选/降维,划分数据集,代入模型预训练,调优/寻找最优超参数,混淆矩阵打印预测结果对比,shap可解释性分析。也学会一些聚类增加特征的方法。期待下面深度学习的学习时光。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值