基于Spark对电商销售数据的分析与预测-计算机毕业设计源码+LW文档

摘 要
随着电商数据行业的迅速发展,对于大量电商数据的深入分析变得尤为重要。数据分析已经成为各行各业的核心,而在电商数据领域,它扮演着更为关键的角色。了解消费者的消费偏好、消费时间、电商数据品牌热度等信息对于电商数据领域的运营和提供更优质服务至关重要。本研究旨在构建一个基于Spark对电商销售数据的分析与预测,以帮助业界更好地理解消费者行为、优化服务流程,并为业务决策提供有力支持。
本文首先探讨了基于Spark对电商销售数据的分析与预测的背景和意义,随后深入研究了爬虫原理、获取策略、信息提取等常见技术。随后,采用Python进行系统开发,并以MySQL数据库搭建基础,实现了电商数据的爬取。对数据库查询结果进行了检测和可视化分析与预测,并对系统的前台界面进行了有效管理。通过对爬取结果的分析,将电商数据以大屏显示形式呈现。最后,进行了全面测试,确保了数据爬取、存储过滤、数据可视化分析与预测以及系统管理等功能的实现。

[关键词] 爬虫,Spark,大数据,MySQL,电商数据

 
Abstract
With the rapid development of the e-commerce data industry, in-depth analysis of a large amount of e-commerce data has become particularly important. Data analysis has become the core of various industries, and in the field of e-commerce data, it plays a more critical role. Understanding consumer preferences, consumption time, e-commerce data brand popularity, and other information is crucial for the operation and provision of better services in the e-commerce data field. This study aims to construct an analysis and prediction of e-commerce sales data based on Spark, in order to help the industry better understand consumer behavior, optimize service processes, and provide strong support for business decision-making.
This article first explores the background and significance of analyzing and predicting e-commerce sales data based on Spark, and then delves into common technologies such as crawler principles, acquisition strategies, and information extraction. Subsequently, the system was developed using Python and built on a MySQL database to achieve the crawling of e-commerce data. Detected, visualized, analyzed, and predicted database query results, and effectively managed the front-end interface of the system. By analyzing the crawling results, present e-commerce data in the form of a large screen display. Finally, comprehensive testing was conducted to ensure the implementation of functions such as data crawling, storage filtering, data visualization analysis and prediction, and system management.

[keywords] Crawler, Spark, Big Data, MySQL, E-commerce Data

 
目  录
摘 要    I
Abstract    II
1 绪论    3
1.1 课题背景    3
1.2 课题意义    4
1.3 国内外研究现状    5
1.4 研究内容    6
2 相关技术介绍    7
2.1 系统开发环境    7
2.2 网络爬虫概述    7
2.3 Python技术    8
2.4 MySQL数据库    8
2.5 Spark技术    9
3 系统需求分析    11
3.1 可行性分析    11
3.1.1操作可行性    11
3.1.2经济可行性    11
3.1.3技术可行性    11
3.2 功能需求分析    11
3.2.1爬虫功能需求分析    11
3.2.2数据可视化功能需求分析    12
3.3 非功能需求分析    13
4 系统设计    15
4.1 系统架构设计    15
4.2 系统总体功能设计    16
4.2.1数据采集功能设计    16
4.2.2数据分析预测功能设计    16
4.3 系统详细设计    17
4.3.1数据采集流程设计    17
4.3.2数据处理与预处理    19
4.3.3模型构建与训练设计    19
4.3.4电商销售数据预测设计    20
4.4 数据库设计    21
5 系统实现    29
5.1数据爬取的实现    29
5.1.1电商数据网站分析    29
5.1.2电商数据爬取实现    29
5.2数据存储    30
5.2.1电商数据清洗    30
5.2.2电商数据存储    31
5.3数据分析与预测    32
5.3.1电商数据查询    32
5.3.2电商数据价格预测    32
5.3.3电商数据品牌分类    33
5.3.4电商数据分类展示    34
5.3.5电商数据词云图    34
6 系统测试    36
6.1测试目的    36
6.2功能测试    36
6.3测试总结    37
结    论    38
参 考 文 献    39
致 谢    40

在计算机信息化快速发展的背景下,电商数据行业逐渐转向网络领域。本文主要探讨了电商数据系统的设计和开发。该系统旨在收集并处理电商数据,包括爬取、清理、存储和统计等功能。作为现代化电商数据管理的重要组成部分,该系统为商家的电商数据推荐提供了便捷的模式。本文主要针对电商数据网上的电商数据信息进行爬取,收集各类电商数据。通过对电商数据的分析,整理并提取相关信息。首先,系统分析了电商数据网的网站结构,观察网页布局,并读取其中的电商数据信息。具体操作步骤包括指定电商数据网的URL、爬取网页信息、获取特定的URL并将其存入队列中。之后,从网页中提取电商数据信息,将其存入数据库,并针对电商数据进行详细分析。最后,得出电商数据的可视化视图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值