图像HSV模型简介
HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)(参考百度)。在HSV模型中,颜色是由色度(Hue),饱和度(Saturation),明度(Value)共同组成。
![]() |
![]() |
如图所示,HSV模型中
- 色度(Hue)使用角度度量的,范围是从
0
°
0\degree
0°到
360
°
360\degree
360°(逆时针旋转),比如
0
°
/
360
°
0\degree/360\degree
0°/360°代表红色,
120
°
120\degree
120°代表原谅色,
240
°
240\degree
240°代表蓝色。
- 饱和度(Saturation)表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高(参考百度)。其范围是0到1。
- 明度(Value)颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关。其范围是0(暗)到1(明)。
RGB模型转HSV模型
参考opencv官方文档:https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html#color_convert_rgb_hsv
首先将R,G,B分量数值缩放到范围0到1之间,即除以255. 接下来按如下公式进行转换即可。
V
=
m
a
x
(
R
,
G
,
B
)
S
=
{
V
−
m
i
n
(
R
,
G
,
B
)
V
if
V
≠
0
0
otherwise
H
=
{
60
(
G
−
B
)
/
(
V
−
m
i
n
(
R
,
G
,
B
)
)
if V=R
120
+
60
(
B
−
R
)
/
(
V
−
m
i
n
(
R
,
G
,
B
)
)
if V=G
240
+
60
(
R
−
B
)
/
(
V
−
m
i
n
(
R
,
G
,
B
)
)
if V=B
0
if R=G=B
V=max(R, G, B) \\ \ \\ S = \left\{\begin{matrix} \frac{V - min(R,G,B)}{V} \ \ \ \ \ \ \ \text{if} \ \ V \ne 0 \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{otherwise} \end{matrix}\right. \\ \ \\ H = \left\{\begin{matrix} 60(G-B)/(V-min(R, G, B)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{if V=R}\\ 120+60(B-R)/(V-min(R, G, B)) \ \ \ \ \text{if V=G} \\ 240+60(R-B)/(V-min(R, G, B)) \ \ \ \ \text{if V=B} \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{if R=G=B} \end{matrix}\right.
V=max(R,G,B) S={VV−min(R,G,B) if V=00 otherwise H=⎩⎪⎪⎨⎪⎪⎧60(G−B)/(V−min(R,G,B)) if V=R120+60(B−R)/(V−min(R,G,B)) if V=G240+60(R−B)/(V−min(R,G,B)) if V=B0 if R=G=B
转换之后V和S都是在0-1之间,H是在
0
°
0\degree
0°到
360
°
360\degree
360°之间(计算的结果可能小于0,如果小于0就加上360)。
假设要将像素(110, 20, 50)分别对应RGB分量,转换到HSV模型空间中。
(
110
,
20
,
50
)
/
255
⟶
(
0.4314
,
0.0784
,
0.1961
)
V
=
m
a
x
(
0.4314
,
0.0784
,
0.1961
)
=
0.4314
S
=
0.4314
−
m
i
n
(
0.4314
,
0.0784
,
0.1961
)
0.4314
=
0.8183
H
=
60
(
0.0784
−
0.1961
)
0.4314
−
m
i
n
(
0.4314
,
0.0784
,
0.1961
)
≈
−
20
(110, 20, 50) / 255 \longrightarrow (0.4314, 0.0784, 0.1961) \\ \ \\ V = max(0.4314, 0.0784, 0.1961) = 0.4314 \\ \ \\ S = \frac{0.4314-min(0.4314, 0.0784, 0.1961)}{0.4314}=0.8183 \\ \ \\ H = \frac{ 60(0.0784-0.1961)}{0.4314 - min(0.4314, 0.0784, 0.1961)}\approx -20
(110,20,50)/255⟶(0.4314,0.0784,0.1961) V=max(0.4314,0.0784,0.1961)=0.4314 S=0.43140.4314−min(0.4314,0.0784,0.1961)=0.8183 H=0.4314−min(0.4314,0.0784,0.1961)60(0.0784−0.1961)≈−20
那么转换后的V=0.4314,S=0.8183,由于H小于0所以加上360即H=340
opencv关于HSV模型实验
使用opencv将RGB模型图像转成HSV模型图像非常简单,直接使用cv2.cvtColor
函数,在code参数中传入cv2.COLOR_RGB2HSV
参数即可。 但需要注意一下,通过opencv转HSV后会根据传入的数据类型缩放到不同范围,如果输入的是Uint8类型的数据(一般读入的图片数据类型都是Uint8),默认缩放到0到255之间 。 那么对于饱和度和明度(默认0到1之间)而言直接乘以255然后取整即可。对于色度(默认是在0到360之间)由于超出了Uint8数据类型的范围,所以官方储存时是直接除以2即缩放到0到180之间。参考opencv官方文档:https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html#color_convert_rgb_hsv
那么对于刚刚讲的示例将(110, 20, 50)RGB模型空间转到HSV模型空间得到是(340,0.8183,0.4314),按照刚刚讲的在opencv转换后应该是:
H
:
340
/
2
⟶
170
S
:
0.8183
×
255
⟶
209
V
:
0.4314
×
255
⟶
110
H: 340/2 \longrightarrow 170 \\ S: 0.8183\times255 \longrightarrow 209 \\ V:0.4314\times255 \longrightarrow 110
H:340/2⟶170S:0.8183×255⟶209V:0.4314×255⟶110
使用opencv转换试下看对不对:
import cv2
import numpy as np
rgb = np.array([110, 20, 50], dtype=np.uint8).reshape((1, 1, 3))
hsv = cv2.cvtColor(rgb, cv2.COLOR_RGB2HSV)
print(hsv)
终端打印的结果是[[[170 209 110]]]
,和我们计算的是一样的,说明理解到位。
接下来在使用opencv来固定色度,饱和度,明度其中两个变量,渐变剩下一个变量来看看效果。
固定sat(饱和度)以及val(明度),渐变hue(色度)。从左到右数值从0到180(对应hue中
0
°
0\degree
0°到
360
°
360\degree
360°)
import cv2
import numpy as np
hue = np.tile(np.arange(0, 180, dtype=np.uint8).reshape((1, 180, 1)),
(50, 1, 1))
sat= np.ones((50, 180, 1), dtype=np.uint8) * 255
val = np.ones((50, 180, 1), dtype=np.uint8) * 255
img_hsv = cv2.merge((hue, sat, val))
img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)
# img = cv2.resize(img, (720, 100))
cv2.imshow("img", img)
cv2.waitKey(0)
固定hue(色度)以及val(明度),渐变sat(饱和度)。从左到右数值从0到255(对应sat中 0 0 0到 1 1 1,饱和度越来越高)
import cv2
import numpy as np
hue = np.zeros((100, 256, 1), dtype=np.uint8)
sat = np.tile(np.arange(0, 256, dtype=np.uint8).reshape((1, 256, 1)),
(100, 1, 1))
val = np.ones((100, 256, 1), dtype=np.uint8) * 255
img_hsv = cv2.merge((hue, sat, val))
img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)
# img = cv2.resize(img, (720, 100))
cv2.imshow("img", img)
cv2.waitKey(0)
固定hue(色度)以及sat(饱和度),渐变val(明度)。从左到右数值从0到255(对应val中 0 0 0到 1 1 1,明度越来越高)
import cv2
import numpy as np
hue = np.zeros((100, 256, 1), dtype=np.uint8)
sat = np.ones((100, 256, 1), dtype=np.uint8) * 255
val = np.tile(np.arange(0, 256, dtype=np.uint8).reshape((1, 256, 1)),
(100, 1, 1))
img_hsv = cv2.merge((hue, sat, val))
img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)
# img = cv2.resize(img, (720, 100))
cv2.imshow("img", img)
cv2.waitKey(0)
随机增强图像HSV
下面的代码来自之前讲的yolov3 spp
项目(增强方法并不唯一),这里结合以上讲的知识进行简单讲解。
- 首先传入图像
img
以及三个超参数h_gain,s_gain,v_gain
。 - 使用np.random.uniform增对h,s,v分别随机生成了一个[-1, 1]之间的随机数,然后分别乘上传入的
h_gain,s_gain,v_gain
,最后加上1。假设h_gain=0.5
那么会在[0.5, 1.5]之间随机生成一个倍率因子,后面会将所有hue
数值乘上这个倍率。s_gain,v_gain
同理不再赘述。 - 使用
cv2.cvtColor
函数将传入的图片由BGR格式(opencv读取图片的默认格式是BGR)转成HSV,在使用cv2.split
函数将HSV分量分开分别赋值给hue, sat, val
- 分别针对hue, sat以及val生成对应的Look-Up Table(LUT)查找表(记录变换前后数值的对应表)。就是将0-255范围内所有的数值都乘以刚刚生成的随机倍率因子构建LUT,后面针对每个元素直接查表无需再计算。注意,hue范围是在0到180之间的,所以有个取余的操作
%180
,sat和val范围是0到255之间,所以使用np.clip
防止越界。 - 使用
cv2.LUT
方法利用刚刚针对hue, sat以及val生成的Look-Up Table进行变换。变换后使用cv2.merge
方法再将hue, sat以及val分量合并个hsv图像。 - 最后使用
cv2.cvtColor
再将hsv图像转换回bgr图像。
import cv2
import numpy as np
def augment_hsv(img, h_gain=0.5, s_gain=0.5, v_gain=0.5):
r = np.random.uniform(-1, 1, 3) * [h_gain, s_gain, v_gain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
aug_img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)
return aug_img
下图是调用augment_hsv
随机增强前、后的效果,左图是随机增强前,右图是随机增强后。