深度学习在图像处理中的应用(tensorflow2.2以及pytorch1.6实现)

本人在读研期间的研究方向是图像处理以及深度学习(主要是图像分类和目标检测)。在做深度学习时使用的是tensorflow深度学习框架,学习全是自学,很多资源都是在Github上找的。我发现现在Github上很多深度学习的开源项目都是用的tensorflow和pytorch框架。所以现在也开始学习pytorch框架,之前一直用的是tensorflow1.x版本,今年正好迎来了新的tensorlfow大版本2.x时代,所以本教程主要是以tensorflow2.2以及pytorch1.6搭建模型(当前最新的版本)。
写这篇博文的目的嘛,首先是巩固自己之前学的知识,其次学习pytorch以及强化tensorflow的使用,最后也能分享自己的学习心得,我想应该能帮到大家少踩点坑。
本教程的初步规划如下,针对每个模块我会先讲下原理,然后带着大家分别使用tensorflow2.2和pytorch1.6去搭建并训练网络,其中也会穿插着讲些我觉得需要注意的地方,以及一些坑,本教程所使用的代码我会放在我的GitHub中,大家可以自行下载使用:
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

我的bilibili频道:
https://space.bilibili.com/18161609/channel/index

我的优酷播单:
http://list.youku.com/albumlist/show/id_52338354


教程目录,点击跳转相应视频(后期会根据学习内容增加)


所需环境

  • Anaconda3(建议使用)
  • python3.6 / 3.7
  • pycharm (IDE)
  • pytorch 1.6 (pip package)
  • torchvision 0.7.0 (pip package)
  • tensorflow 2.2 (pip package)

其实我看到网上也有些相关教程,但是我觉得有的主要是讲原理并不会带你去写代码,有的是直接从GitHub上clone些大牛的代码然后和大家讲怎么去用(我之前有看到一些老师clone git上的一些大牛代码然后教你怎么用,然后课程也很贵基本都是成百上千的,表示学生党看不起),我总感觉没能很好的融合在一起,可能是我没有找到好的资源吧,哈哈。所以我就想自己总结的同时也将所学的知识分享给大家。嗯~ o( ̄▽ ̄)o,然后我想说我只是个普普通通的研究生而已(本科并不是计算机专业),很多知识都是靠研究生期间自学的并没有接受过系统的学习,有说的不对的地方还希望大家多多指教,我们共同学习。由于本人已经开始上班了,所以只能抽空余时间去准备要讲的课程,录视频以及剪辑视频,所以效率比较低,还请大家见谅。如果有什么问题,可以直接留言有空我会回复的。

已标记关键词 清除标记
相关推荐
【课程介绍】       Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 【课程要求】 (1)开发环境:python版本:Python3.7+; torch 版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学员收货:掌握最新科技图像分类关键技术; (5)学员资料:内含完整程序源码和数据集; (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 【课程特色】 阵容强大 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 仅跟前沿 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 实战为先 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 保障效果 项目实战方向包含了学术届和工业届最前沿技术要点 项目包装简历优化 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 【课程思维导图】 【课程实战案例】
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页