703. 数据流中的第 K 大元素
难度:简单
设计一个找到数据流中第 k
大元素的类(class)。注意是排序后的第 k
大元素,不是第 k
个不同的元素。
请实现 KthLargest
类:
KthLargest(int k, int[] nums)
使用整数k
和整数流nums
初始化对象。int add(int val)
将val
插入数据流nums
后,返回当前数据流中第k
大的元素。
示例:
输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
提示:
1 <= k <= 10^4
0 <= nums.length <= 10^4
-10^4 <= nums[i] <= 10^4
-10^4 <= val <= 10^4
- 最多调用
add
方法10^4
次 - 题目数据保证,在查找第
k
大元素时,数组中至少有k
个元素
解答:
class KthLargest {
//优先队列PriorityQueue,通过二叉小顶堆实现
//初始化时间复杂度为:O(NlogK),其中N为初始化时nums的长度;单次插入时间复杂度为:O(logK)。空间复杂度O(K)。
PriorityQueue<Integer> queue;
int k;
public KthLargest(int k, int[] nums) {
this.k = k;
queue = new PriorityQueue<>();
for(int num : nums){
queue.add(num);
}
for(int i = 0; i < nums.length - k; i++){
queue.poll();
}
}
public int add(int val) {
queue.offer(val);
if(queue.size() > k){
queue.poll();
}
return queue.peek();
}
}
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/
参考自:
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/kth-largest-element-in-a-stream/solution/shu-ju-liu-zhong-de-di-k-da-yuan-su-by-l-woz8/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。