703. 数据流中的第K大元素

703. 数据流中的第 K 大元素

难度:简单

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]

解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

提示:

  • 1 <= k <= 10^4
  • 0 <= nums.length <= 10^4
  • -10^4 <= nums[i] <= 10^4
  • -10^4 <= val <= 10^4
  • 最多调用 add 方法 10^4
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

解答:

class KthLargest {
    //优先队列PriorityQueue,通过二叉小顶堆实现
    //初始化时间复杂度为:O(NlogK),其中N为初始化时nums的长度;单次插入时间复杂度为:O(logK)。空间复杂度O(K)。
    PriorityQueue<Integer> queue;
    int k;

    public KthLargest(int k, int[] nums) {
        this.k = k;
        queue = new PriorityQueue<>();
        for(int num : nums){
            queue.add(num);
        }
        for(int i = 0; i < nums.length - k; i++){
            queue.poll();
        }
    }
    
    public int add(int val) {
        queue.offer(val);
        if(queue.size() > k){
            queue.poll();
        }
        return queue.peek();
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

参考自:

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/kth-largest-element-in-a-stream/solution/shu-ju-liu-zhong-de-di-k-da-yuan-su-by-l-woz8/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Finish_Hou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值