神经网络正则化实现

本篇文章将实现神经网络的正则化,相比上一篇文章的代码,本篇文章我们仅在正则化部分进行了添加实现,下面是代码:

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms

from visdom import Visdom

batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       # transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        # transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

device = torch.device('cuda:0')
net = MLP().to(device)
#使用正则化,weight_decay
optimizer = optim.SGD(net.parameters(), lr=learning_rate, weight_decay=0.01)
criteon = nn.CrossEntropyLoss().to(device)

viz = Visdom()

viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
                                                   legend=['loss', 'acc.']))
global_step = 0

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.cuda()

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        global_step += 1
        viz.line([loss.item()], [global_step], win='train_loss', update='append')

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)#寻找最大值的位置
        correct += pred.eq(target).float().sum().item()

    viz.line([[test_loss, correct / len(test_loader.dataset)]],
             [global_step], win='test', update='append')
    viz.images(data.view(-1, 1, 28, 28), win='x')
    viz.text(str(pred.detach().cpu().numpy()), win='pred',
             opts=dict(title='pred'))

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

下面是一个示例 BP 神经网络回归正则化代码,其中使用 L2 正则化来减小模型的复杂度并避免过拟合: ``` import numpy as np class NeuralNetwork: def __init__(self, input_dim, hidden_dim, output_dim, reg_lambda=0.01): # 初始化网络参数 self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.reg_lambda = reg_lambda # 初始化权重和偏置 self.weights1 = np.random.randn(self.input_dim, self.hidden_dim) / np.sqrt(self.input_dim) self.bias1 = np.zeros((1, self.hidden_dim)) self.weights2 = np.random.randn(self.hidden_dim, self.output_dim) / np.sqrt(self.hidden_dim) self.bias2 = np.zeros((1, self.output_dim)) def forward(self, X): # 前向传播 self.z1 = np.dot(X, self.weights1) + self.bias1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, X, y, y_hat): # 反向传播 error = y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * (1 - np.power(self.a1, 2)) # 计算梯度 grad_weights2 = np.dot(self.a1.T, delta2) + self.reg_lambda * self.weights2 grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(X.T, delta1) + self.reg_lambda * self.weights1 grad_bias1 = np.sum(delta1, axis=0) # 更新权重和偏置 self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 self.bias1 -= learning_rate * grad_bias1 def train(self, X, y, epochs=10000, learning_rate=0.01): for i in range(epochs): # 前向传播 y_hat = self.forward(X) # 反向传播 self.backward(X, y, y_hat) # 计算损失函数和精度 loss = np.mean(np.square(y - y_hat)) if i % 1000 == 0: print("Epoch:", i, "Loss:", loss) ``` 在上面的代码中,`reg_lambda` 参数表示正则化强度。在前向传播和反向传播过程中,我们需要计算正则化项的梯度,并将其加入到原始梯度中。在计算梯度时,我们需要将权重矩阵除以样本数,以避免梯度爆炸或消失的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛毛真nice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值