metis 论文串行图划分笔记

Metis是一种图划分工具,旨在将图均衡地划分为多个部分,减少边的连接。文章详细介绍了k路划分过程,包括Coarsening Phase(节点合并策略),Partitioning Phase(使用Kernighan-Lin算法进行划分),以及Uncoarsening Phase(细化阶段的优化)。Coarsening通过随机匹配或高度连接节点合并来减少图的规模,Partitioning利用KL算法调整节点分配以最小化edge-cut,Uncoarsening则进一步优化划分。整个过程未考虑网络拓扑和带宽信息,且大规模图的并行化处理面临挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Metis

图划分

目标:将图划分为几个包含差不多相等的顶点个数的部分,并且这些部分之间的边数目尽可能地小。(若是有权重的 ,则是各个划分内部的权重和差不多相等,各划分之间的权重尽可能小)


k路划分:

可以不断地执行二路划分 递归的执行 logk 次:例如要求 4 个,那么递归执行 log4 即两次二分,那么就变成了四块。


Coarsening Phase

多个节点合成一个节点,有以下几点要注意:

  1. 节点的权值为合成的结点的总个数
  2. 为保持连通性,新的边为原来的并集
  3. 边的权值为并起来的边的个数之和

两种方法:

  1. 随机匹配,匹配上的点合成一个节点
  2. 有高度连接的点合成一个点

第二种方法适用于 VLSI 因为其中可能有很多连接紧密的节点。

第一种方法:
一个匹配是 maximal 的,为如果图中任何一个没被选入匹配的边的至少一个端点被匹配了。也即不能有这样的两个邻接点,他们都没被选中,这样的话这个匹配就不是 maximal 匹配

maximal 匹配中,拥有最大的边的数目的是 maximum 匹配

显然,计算 maximum 匹配要比普通的 maximal 匹配消耗的多。

G0 若是 maximal 的,则 Gi 仍是 maximal 的

Random Matching:
随机的访问图上的点&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值