图分割 Graph Partition 学习笔记2

本文介绍了Metis层次化分割算法,强调其高精度、高效执行和低注入元的优点,详细讲述了软件包的安装流程,并提供了相关链接供读者进一步学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

  今天来学一下Metis算法,经过搜索发现这个算法还是蛮多人在讲解的,我也在这里浅浅记录一下~


一、Metis原理

  METIS是一种层次化的分割算法(multi-level partitioning),核心思想:对于给定原图结构,持续的降低原图的大小,然后达到一定程度对于缩减后的图结构进行分割,最后将分割后的小图还原成原始的图结构保证每份子图的均衡性。
在这里插入图片描述
  整个划分过程分成coarsening, initial partitioning 和 uncoarsening (refinement) 三个部分。coarsening将图的大小逐渐缩小,G1->G2->G3->G4;在G4阶段执行K路划分;然后在uncoarsening阶段将图中的原始节点映射到G4划分的cluster中。

二、Metis优点

  • 具有高质量的划分结果,据称比通常的谱聚类(spectral clustering)要精确10%-50%;
  • 执行效率非常高,比常见的划分算方法快1-2个数量级,百万级顶点的图几秒钟之内就可以切分为256个类;
  • METIS具有很低的注入元(fill-in ),从而降低了存储负载和计算量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值