python-opencv 带你揭开美颜磨皮的魔术背后的代码

6 篇文章 27 订阅 ¥9.90 ¥99.00
本文探讨如何使用Python的OpenCV库实现美颜磨皮效果,特别是重点介绍了EPF边缘保留滤波技术。通过对比高斯模糊与EPF滤波的处理效果,展示EPF在保留边缘细节方面的优势。分享了实现这一功能的关键代码,鼓励读者通过学习和分享提升技能。
摘要由CSDN通过智能技术生成

这里只讲一个,磨皮,我们都知道磨皮的好处就是,脸上的痘痘,稍黑的皮肤都能磨成白皮,但是五官的轮廓还是有的。

在python-opencv里面,能做到的,最关键的是EPF边缘保留滤波了,

先给你们看某个明星的黑图;

我用了高斯模糊与EPF边缘保留滤波进行对比,看看哪个处理好些;同样的参数

明显是epf啦!

epf边缘保留滤波的作用:在一张图片上,有很多的颜色,在颜色区分不大的部分,大力磨皮,磨成差距不大的,但是对于明显颜色分界的部分要保留,不动。这个就是边缘保留滤波;

代码在此,请收下

import cv2
#使用高斯模糊
img=cv2.imread("E:/cvimg/0
要在Python中使用OpenCV进行人脸美颜,你可以使用以下步骤: 1. 加载人脸检测器和预训练的模型。你可以使用OpenCV提供的人脸检测器`haarcascade_frontalface_default.xml`来检测人脸。 2. 加载图像,并进行灰度转换。 3. 使用人脸检测器检测图像中的人脸。 4. 对每张检测到的人脸进行美颜处理。你可以使用OpenCV提供的各种图像处理函数,如磨皮、美白、调整对比度和饱和度等。 以下是一个简单的示例代码,展示如何使用OpenCV进行人脸美颜: ```python import cv2 # 加载人脸检测器 face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 加载图像 image = cv2.imread("face.jpg") # 转换为灰度图像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, 1.1, 4) # 遍历每张人脸 for (x, y, w, h) in faces: # 提取人脸区域 face_roi = image[y:y+h, x:x+w] # 进行人脸美颜处理 # ... # 将美颜后的人脸区域放回原图像 image[y:y+h, x:x+w] = face_roi # 显示结果 cv2.imshow("Beauty", image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个示例代码中,你可以根据需要使用不同的图像处理函数来实现美颜效果。例如,你可以使用高斯模糊函数`cv2.GaussianBlur()`来实现磨皮效果,使用亮度调整函数`cv2.addWeighted()`来实现美白效果等。 请注意,这只是一个简单的示例代码,你可以根据实际需求进行修改和扩展。希望对你有所帮助!如有更多问题,请继续提问。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_37591637

请给我持续更新的动力~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值