Linux系统Conda安装paddle-GPU后出现The third-party dynamic library (libcudnn.so) 报错

在Linux系统下,使用conda环境安装GPU版本的Paddle,安装后使用官方检测程序python -c "import paddle; paddle.utils.run_check()"检测GPU是否工作正常,出现如下报错:The third-party dynamic library (libcudnn.so) that Paddle depends on is not configured correctly.

W0322 10:44:47.675211 290774 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 11.7, Runtime API Version: 11.6
W0322 10:44:47.675591 290774 dynamic_loader.cc:307] The third-party dynamic library (libcudnn.so) that Paddle depends on is not configured correctly. (error code is /usr/local/cuda/lib64/libcudnn.so: cannot open shared object file: No such file or directory)
  Suggestions:
  1. Check if the third-party dynamic library (e.g. CUDA, CUDNN) is installed correctly and its version is matched with paddlepaddle you installed.
  2. Configure third-party dynamic library environment variables as follows:
  - Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...`
  - Windows: set PATH by `set PATH=XXX;
 ……
    PreconditionNotMetError: Cannot load cudnn shared library. Cannot invoke method cudnnGetVersion.
      [Hint: cudnn_dso_handle should not be null.] (at /paddle/paddle/phi/backends/dynload/cudnn.cc:60)
      [operator < fill_constant > error]

分析报错内容,Paddle依赖的第三方链接库配置错误,根据建议,添加环境变量即可。

解决方案:

查看路径

我是用的是非root用户创建的环境,命名为paddle,环境路径为~/.conda/envs/paddle,对应的第三方动态链接库地址为~/.conda/envs/paddle/lib,根据你建立的环境名称,对应的路径为~/.conda/envs/[虚拟环境名称]/lib
若不清楚安装路径,可使用conda activate [环境名]进入环境,运行python -c "import paddle; print(paddle.__file__)"输出安装路径,我的输出结果为

/home/ubuntu/.conda/envs/paddle/lib/python3.8/site-packages/paddle/__init__.py

对应的路径为

/home/ubuntu/.conda/envs/paddle/lib
或
~/.conda/envs/paddle/lib #建议使用相对路径

添加环境变量

  1. 临时方案
    每次在程序运行前设置环境变量
    export LD_LIBRARY_PATH=~/.conda/envs/paddle/lib
    python xxx.py
    
  2. 永久方案
    将环境变量添加到~/.bashrc文件
    echo "export LD_LIBRARY_PATH=~/.conda/envs/paddle/lib">>~/.bashrc
    
    添加后需要关闭终端重新打开或者登录。

再次运行,错误消失。

(paddle) ubuntu@ThinkStation:~$ python -c "import paddle; paddle.utils.run_check()"
Running verify PaddlePaddle program ... 
W0322 11:10:42.037217 309060 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 11.7, Runtime API Version: 11.6
W0322 11:10:42.042984 309060 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.
PaddlePaddle works well on 1 GPU.
W0322 11:10:47.978128 309060 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 2. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 2.
PaddlePaddle works well on 2 GPUs.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
### 回答1: 这个错误提示表明 PaddlePaddle 需要依赖的一个名为 cudnn64_7.dll 的第三方动态库没有被正确地配置。错误代码 126 表示在尝试加载这个库时发生了一个错误。 解决这个问题的方法取决于你的操作系统安装环境。以下是一些可能有用的建议: 1. 确认已经正确安装了 CUDA 和 cuDNN,并且它们的版本与 PaddlePaddle 所需的版本匹配。 2. 确认系统环境变量已经正确设置,包括 PATH 和 LD_LIBRARY_PATH。具体而言,确保 CUDA 和 cuDNN 的路径已经被添加到这些变量中。 3. 如果你是在 Windows 上使用 PaddlePaddle,尝试将 cudnn64_7.dll 复制到 PaddlePaddle 安装目录下的 bin 目录中。通常情况下,这个目录的路径类似于 C:\Program Files\PaddlePaddle\bin。 4. 如果你使用的是 Anaconda 环境,尝试在 Anaconda Prompt 中输入以下命令:conda install cudatoolkit=xx.x cudnn=xx.x -c paddle。其中的 xx.x 是你正在使用的 CUDA 和 cuDNN 版本号。 如果以上方法无法解决问题,建议在 PaddlePaddle 的官方论坛或 GitHub 上寻求帮助。 ### 回答2: 这个错误是因为PaddlePaddle的一个第三方库cudnn64_7.dll没有配置正确所引起的。cudnn是NVIDIA的一个专门用于深度神经网络的库,它提供了高效的计算和内存管理,能够大幅提高深度神经网络的训练和推断效率。PaddlePaddle对cudnn的依赖非常重要,如果cudnn配置不正确就会出现运行时错误。 首先,我们可以检查cudnn库的路径是否正确。在PaddlePaddle的配置文件中,需要设置cudnn库的路径,确保PaddlePaddle能够正确找到它。例如,在Windows系统中,可以在环境变量中设置CUDA_HOME和CUDNN_HOME这两个变量,它们分别指向CUDA和cudnn安装目录。在Linux系统中,可以编辑bashrc文件,添加对应的路径。当PaddlePaddle引用cudnn库时,会自动在这些路径下寻找cudnn库。 其次,我们可以检查cudnn库的版本是否正确。PaddlePaddle对不同版本的cudnn库有不同的要求,如果版本不对就会出现错误。在PaddlePaddle的官网上可以找到不同版本cudnn库的要求。在更新cudnn库时,需要注意版本的兼容性,不要将不兼容的版本强行安装。 最后,我们也可以考虑重新安装PaddlePaddle和cudnn库。有时候,由于其他原因导致PaddlePaddle和cudnn的配置出现错误,重新安装可以解决问题。在重新安装时,需要确保所有依赖库的版本和配置都是正确的,并且按照官方指南进行操作。 总之,当出现runtimeerror: (preconditionnotmet) the third-party dynamic library (cudnn64_7.dll) that paddle depends on is not configured correctly. (error code is 126)这个错误时,需要检查cudnn库的路径和版本是否正确,并考虑重新安装PaddlePaddle和cudnn库。 ### 回答3: 这个错误信息是PaddlePaddle深度学习框架在加载cudnn64_7.dll动态库时发现了问题,错误代码是126。cudnn64_7.dll是一个用于加速GPU计算的第三方动态库,在使用PaddlePaddle训练深度学习模型时需要依赖它。出现这个错误通常可能是以下两种情况之一: 1. cudnn64_7.dll文件不存在或已损坏。 解决方案:可以尝试重新安装CUDA和cudnn库。首先检查CUDA和cudnn的版本是否匹配,然后下载对应版本的cudnn库并将其解压到CUDA库的相应目录中。如果已经安装了正确版本的cudnn库,可以尝试重新安装CUDA并选择添加cudnn库选项来修复问题。 2. cudnn64_7.dll文件路径未正确配置。 解决方案:检查CUDA和cudnn的环境变量是否正确设置,确保它们的路径被正确添加到系统的环境变量中。另外,也可以在PaddlePaddle的命令行参数中添加CUDA和cudnn的路径来指定它们的位置。 总的来说,如果遇到这个错误,最好先检查CUDA和cudnn的版本是否匹配并确认环境变量设置是否正确。如果问题仍然存在,可以重新安装CUDA和cudnn库来解决。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值