spark on yarn 资源计算公式

一、spark on yarn 提交任务有两种模式

1、cluster模式 :

ApplicationMaster进程进行资源分配和executor的启动

提交命令:

--master yarn \

--deploy-mode client \

--driver-memory 5G \ applicationMaster 所在的容器分配的内存

--driver-cores 5 \ applicationMaster 所在的容器分配的核数

--executor-memory 3G \ executor所在容器的内存

--executor-cores 2 \ executor所在容器的核数

--num-executors 20 \ 最大分配的excuter数量

 

driver总内存:

ceil(((driver-memory *0.1 >384? driver-memory *0.1:384)+driver-memory)/yarn.scheduler.minimum-allocation-mb)*yarn.scheduler.minimum-allocation-mb

 

excutor总内存:

ceil(((executor-memory *0.1 >384? executor-memory *0.1:384)+executor-memory)/yarn.scheduler.minimum-allocation-mb)*yarn.scheduler.minimum-allocation-mb*(实际启动的executor个数)

 

2、client模式 :

ExecutorLauncher进程进行资源分配和executor的启动

提交命令:

--master yarn \

--deploy-mode client \

--conf spark.yarn.am.memory=1g  \ ExecutorLauncher所在容器的内存

--conf spark.yarn.am.cores=3 \ ExecutorLauncher所在容器的核数

--executor-memory 3G \ executor所在容器的内存

--executor-cores 2 \ executor所在容器的核数

--num-executors 20 \ 最大分配的excuter数量

 

driver总内存:

ceil(((spark.yarn.am.memory *0.1 >384? spark.yarn.am.memory *0.1:384)+spark.yarn.am.memory)/yarn.scheduler.minimum-allocation-mb)*yarn.scheduler.minimum-allocation-mb

 

excutor总内存:

ceil(((executor-memory *0.1 >384? executor-memory *0.1:384)+executor-memory)/yarn.scheduler.minimum-allocation-mb)*yarn.scheduler.minimum-allocation-mb*(实际启动的executor个数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值