概率论——随机试验、随机事件、样本空间

本文深入探讨了概率论中的核心概念——随机试验,包括其定义、特性及实例,如抛硬币与摸球实验。同时解析了样本空间、样本点的概念,以及随机事件与随机变量之间的区别与联系,为理解更复杂的概率理论奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 随机试验

随机试验就是试验结果呈现出不确定性的试验,且满足以下三个条件:
(1) 试验可在相同条件重复进行
(2) 试验的可能结果不止一个,且所有可能结果可事先预知
(3)每次试验的结果只有一个,但不能事先预知

例子:抛硬币,袋中摸球等。

2. 样本空间和样本点

随机试验的所有可能结果组成的集合称为样本空间,该集合的元素称为样本点。对于抛掷硬币试验,样本空间 = { 正面,反面 },正面就是此样本空间的一个样本点。

3. 随机事件和随机变量的区别联系

各自定义:
(1)随机事件:随机事件是样本空间的子集。在每次试验中,当且仅当该子集中的任意一个元素发生时,称该随机事件发生。
(2)随机变量:随机变量是定义在样本空间上的映射。通常是将样本空间映射到数字空间,这样做的目的是方便引入高等数学的方法来研究随机现象。例如,在抛掷硬币试验中,将正面与1对应,反面与0对应,那么样本空间 = { 正面,反面 } 与 随机变量X = { 1,0 } 之间建立起了一一对应的关系。

区别:
对于随机事件A,P(A)表示随机事件发生的概率;对于随机变量X,P(X)表示随机变量取值为X的概率。从某种意义上来说,与随机变量相比,随机事件更像是定义在样本空间上的随机常量。

········
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值