前言
概率论与数理统计是研究和揭示随机现象统计规律性的学科。
(高等数学和线性代数研究的是确定性现象的数学学科。)

随机试验
我们通过研究随机试验来研究随机现象。
随机试验的定义:

- 相同条件重复进行
- 可能结果不止一个,能事先明确所有可能结果
- 试验前不知道哪个结果会出现
判断以下试验是否为随机试验:

都是。1、3显然满足,对于2:可以明确可能出现的所有结果:自然数、非负数。
样本空间
样本S空间是由全部样本点e构成的集合。

上面的例题:


随机事件
一些定义:



如何用描述法表示一个集合:


事件间的关系、事件的运算及运算法则
关系(包含、相等、互斥、对立)

对立关系属于互斥关系
如投骰子:可能投到1、2、3、4、5、6.
那么投到1和投到2是互斥的,他们不可能同时发生。
投到奇数和投到偶数是对立的,他们不可能同时发生,且加在一起是整个集合。(“除了你就是我”的关系)

运算(和(并∪),积(交∩),差-)

n个事件的和、积事件:

可列个事件:

事件的运算法则


对对偶律的理解:
A∪B表示A、B中至少有一个要发生,其整个取反就是两个都不发生,及A非(积)B非。
AB表示两个事件同时发生,其取反就是要有一个事件不发生,即A非∪B非。
“长线变短线,开口变方向。”
运算顺序:逆、交、并或差运算
A-B、AB、B-A:

本文介绍了概率论与数理统计的基础概念,包括随机试验的定义、样本空间以及随机事件的相关性质。通过实例探讨了事件的关系、运算及其运算法则,如互斥、对立和集合描述法。此外,还讨论了事件的并、交、差运算,并阐述了对对偶律的理解。
4181

被折叠的 条评论
为什么被折叠?



