Java生成条形码PDF文件【可批量】

最近公司有个业务,需求是开发一个可以生成条形码PDF文档的小工具。另外,老板还要求能在五一前上线该工具,时间紧,任务重。正好最近ChatGPT正火爆,何不让他帮我实现这个工具呢?

二话不说,打开chatGPT的提问窗口,把我的需求告诉了他。很快啊,他不负众望,立马就给出了一套实现方案,把代码COPY到我的项目里,报了很多错,仔细一看,是没有引入相应的依赖,按照报错信息,在项目中添加了以下依赖:

  <!--A Free Java-PDF library-->
  <dependency>
      <groupId>com.itextpdf</groupId>
      <artifactId>itextpdf</artifactId>
      <version>5.5.13.3</version>
  </dependency>

刷新之后,依赖是有了,代码也不爆红了!写了个main方法测试一下,空指针异常,试了几次都是不行,于是我仔细检查报错地方的代码,发现ChatGPT生成的代码只是写了个大概,具体的逻辑还要自己根据具体情况去修改。看来ChatGPT还不太成熟!我还暂时失业不了~

经过一番折腾,代码能跑了。但生成的文件怎么那么难看,例如,
这样

在这里插入图片描述
这样
在这里插入图片描述
还有这样在这里插入图片描述
反正就是位置不对。

后来在代码里发现几个控制位置和尺寸的参数,经过一番微调终于实现了自己想要的效果,如下图
在这里插入图片描述
到这里就算结束了。下面贴出实现的代码


import cn.hutool.core.text.StrBuilder;
import com.itextpdf.text.*;
import com.itextpdf.text.pdf.Barcode;
import com.itextpdf.text.pdf.Barcode128;
import com.itextpdf.text.pdf.PdfContentByte;
import com.itextpdf.text.pdf.PdfWriter;
import lombok.extern.slf4j.Slf4j;

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

/**
 * @author Charles
 * @Date 2023-04-26
 */
@Slf4j
public class BarcodeUtil {

    /**
     * 生成条形码
     *
     * @param cb     PDF 内容字节
     * @param code   条码数据
     * @param width  条码宽度
     * @param height 条码高度
     * @return 条码图片
     * @throws DocumentException
     * @throws IOException
     */
    public static Image generateBarcode(PdfContentByte cb, String code, float width, float height) throws DocumentException, IOException {
        //条形码编码类型可自定义,这里选用Code128
        Barcode128 barcode = new Barcode128();
        barcode.setCodeType(Barcode.CODE128);
        barcode.setCode(code);
        //设置替代文字
        barcode.setAltText("SN:" + code);
        Image img = barcode.createImageWithBarcode(cb, BaseColor.BLACK, BaseColor.BLACK);
        img.scaleAbsolute(width, height);
        return img;
    }


    /**
     * 批量生成条形码pdf文件
     *
     * @param codes 条码数据
     * @param os    输出流
     * @throws IOException
     */
    public static void generateBarcodePDF(List<String> codes, OutputStream os) throws IOException {
        Document document = null;
        try {
            document = new Document(new Rectangle(198F, 85F), 10, 2, 10, 2);
            PdfWriter writer = PdfWriter.getInstance(document, os);
            document.open();
            PdfContentByte cb = writer.getDirectContent();
            for (String code : codes) {
                document.newPage();
                document.add(BarcodeUtil.generateBarcode(cb, code, 180, 60));
            }
            os.flush();
        } catch (DocumentException e) {
            log.error("generateBarcodePDF 执行异常!", e);
            e.printStackTrace();
        } finally {
            if(Objects.nonNull(document)){
                document.close();
            }
            if (Objects.nonNull(os)) {
                os.close();
            }
        }
    }

    public static void main(String[] args) throws IOException {
        OutputStream os = new FileOutputStream("D:/下载/R.pdf");

        StrBuilder str = new StrBuilder();
        List<String> list = new ArrayList<>();
        for (int i = 30000001; i <= 30001000; i++) {
            list.add(str.append("R-").append(i).toStringAndReset());
        }
        generateBarcodePDF(list, os);
    }

}
在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的与数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与数据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值