万花尺轨迹性质研究

因为快毕业了,把本科期间做过的一些有意思的小作业整理一下

1、轨迹方程

将万花尺简化为下图:笔尖位于A点,子尺(动系)的圆心为C(动点),半径为b,母尺的圆心位于O点,半径为a,显然万花尺画出的图案与笔尖的运动速度无关,故设副尺以恒定角速度ω(设为顺时针方向)转动。设C点坐标为(Xc,Yc),A点相对于C点的坐标为(Xr,Yr),A点在XOY在坐标系中坐标为(X,Y),子尺,母尺及笔落点的位置关系如下图所示。
在这里插入图片描述
由于子尺与母尺接触点是瞬心,所以C点的运动速度为ωb,方向与OC连线垂直,则C绕O点转动的角速度为-ωb/(a-b),所以θ=ωbt/(a-b);由于子尺自转方向与C绕O转动方向相反,由角速度合成,子尺相对于OC的角速度为ωa/(a-b),所以=ωat/(a-b),可得Φ=θ-=-ωt。

坐标(Xc,Yc),(Xr,Yr),(X,Y)有如下关系:在这里插入图片描述

由A点坐标表达式知曲线的几何形状与a,b,h有关。

2、周期

设起点处θ=θ1,经过一段时间后θ=θ2,且有: 在这里插入图片描述

其中m,n为整数,易知上面的两个方程是曲线有周期性的充要条件,(θ2-θ1)为周期。
解上面的方程,可得m,n有如下关系: n/m=(a-b)/b,如果 (a-b)/b能化为整数比,则这样的m,n存在,当C点转过角度足够大或曲线足够长时,曲线一定能闭合,C点转过的角度的周期为Δθ=2mπ=2nπb/(a-b)(m,n满足n/m=(a-b)/b),若子尺以匀角速度ω转动,则T=2mπ(a-b)/(bω)= 2nπ/ω;若(a-b)/b不能化为整数比,则周期为无穷大或者说不存在。

3、轨迹的形状

由曲线表达式知曲线的几何形状为圆内旋轮线。

(1)、曲线的范围:
A点到O点的距离的平方r²=(a-b)²+h²+2h(a-b)cos(aθ/b),r²max=(a-b)²+h²+2h(a-b)=a²即h=b时,曲线上离O点最远的点位于母尺的圆上。
h>b时,曲线为长辐圆内旋轮线
在这里插入图片描述

(2)、曲线的边数(瓣数)
在b/a为有理数时,设其最简整数比为为k/l,动圆与定圆的周长比也为k/l。
当k=1时,说明当动圆绕定圆一周后,落笔点也回到原位置,此时点画出l次相同的首位连接的弧线后回到出发点。因此这时的图案有l个曲边,或者说有l瓣。其中当l=2时,图形为椭圆,此时视椭圆由两个曲边构成。
当k>1时,说明当动圆绕定圆一周后,落笔点不在原位置,当动圆绕定圆k周时,落笔点才能回到出发点,而此时的图案有l个曲边,或者说有l瓣,此时有如下关系式:
在这里插入图片描述

4、万花尺图形特例分析——玫瑰线

当满足a-b=h时,有:r²=2h²(1+cos(aθ/b))=4h²cos²(aθ/(2b)),万花尺曲线由:r=2hcos(aθ/(2b)),r=-2hcos(aθ/(2b))两条曲线组成,此时曲线所有边都在图形中心处相交。
由玫瑰线方程ρ=Acos(nα),除2、(2)中讨论的确定瓣数的方法,还可以根据玫瑰线的几何特性来计算其瓣数,现以n为奇数和偶数举例如下:n=2k+1即a=(4k+2)h/(4k+1),b=h/(4k+1)时,ρ=Acos(nα)共有(2k+1)个叶子,但是因为万花尺曲线由两条对称曲线组成所以共有 2*(2k+1)个叶子;相应的n=2k即a=4k/(4k-1),b=h/(4k-1)时万花尺曲线共有4k个叶子。如下图所示:
在这里插入图片描述

5、结论

综合上述讨论可得如下结论:设万花尺母尺半径为a,子尺半径为b,落笔点距子尺中心h,则万花尺形状由a,b,h以及落笔点移动的距离有关;轨迹曲线在(a-b)/b(或者a/b)能化为整数比时,周期存在,落笔点移动足够长后曲线可以闭合;曲线能闭合时,曲线的瓣数与b/a的值(设为k/l)有关,且有:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值