LeetCode10-1.斐波那契数列

题目:输入一个整数 ,求斐波那契数列的第 n项。(斐波那契数列每一项的值是其前两项的和)

思路1:暴力法

思路2:记忆化搜索
开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。

思路3:递推
开一个大数组,记录每个数的值。用循环递推计算。
总共计算 n 个状态,所以时间复杂度是 O(n)。
开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。

思路4:矩阵运算+快速幂
先利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。
首先定义 Xn=[An,An-1] X1=[A1 A0]
A=[1 1
   1 0]
则有Xn=Xn-1*A
Xn=X1*A^(n-1)
Xn向量的第一个元素即为an

C++实现如下。

/*
题目:输入一个整数 ,求斐波那契数列的第 n项。(斐波那契数列每一项的值是其前两项的和)
假定从0开始,第0项为0。(n<=39)
*/
#include<iostream>
#include<vector>
using namespace std;

//思路1:暴力法
class Solution1 {
public:
	int Fibonacci(int n) {
		int a = 0; int b = 1;
		int mod = 1000000007;
		while (n--)
		{
			int c = (a + b)%mod;
			a = b;
			b = c;
		}
		return a;
	}
};
//思路2:记忆化搜索
//开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
//总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。
class Solution2 {
public:
	int Fibonacci(int n) {
		int a = 0; int b = 1;
		int mod = 1000000007;
		int N = 10000;
		vector<int> v(N,0);
		while (n--)
		{
			int c;
			if (v[n])c=v[n];
			c = (a + b) % mod;
			v[n] = c;
			a = b;
			b = c;
		}
		return a;
	}
};

//思路3:递推
//开一个大数组,记录每个数的值。用循环递推计算。
//总共计算 n 个状态,所以时间复杂度是 O(n)。
//开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
//总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。
class Solution3 {
public:
	int Fibonacci(int n) {
		int a = 0; int b = 1;
		int mod = 1000000007;
		int N = 10000;
		vector<int> v;
		v.push_back(0);
		v.push_back(1);
		for (int i = 2; i <= n; i++)
		{
			a = v[i - 1] + v[i - 2];
			a %= mod;
			v.push_back(a);
		}
		return v[n];
	}
};

//思路4:矩阵运算+快速幂
//先利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。
//首先定义 Xn=[An,An-1] X1=[A1 A0]
//A=[1 1
//   1 0]
//则有Xn=Xn-1*A
//Xn=X1*A^(n-1)
//Xn向量的第一个元素即为an

class Solution4 {
public:
	const int mod = 1000000007;
	void mul(int a[][2], int b[][2], int c[][2])//矩阵乘法定义
	{
		int temp[][2] = { { 0, 0 }, { 0, 0 } };
		for (int i = 0; i < 2; i++)
		{
			for (int j = 0; j < 2; j++)
			{
				for (int k = 0; k < 2; k++)
				{
					long long  x = temp[i][j] + (long long)a[i][k] * b[k][j];
					temp[i][j] = x%mod;
				}
			}
		}
		for (int i = 0; i < 2; i++)
		{
			for (int j = 0; j < 2; j++)
			{
				c[i][j] = temp[i][j];
			}
		}
	}
	int Fibonacci(int n) {
		int X1[2] = {0,1};
		int res[2][2] = { { 1, 0 }, { 0, 1 } };//Xn矩阵
		int t[2][2] = { { 1, 1 }, { 1, 0 } };//t为底数矩阵 n为幂数
		long long k = n;
		while (k)
		{
			if (k & 1)//幂数为奇数
				mul(res, t, res);
			mul(t, t, t);//取二次幂后的底数
			k >>= 1;//k除2
		}
		int c[2] = { 0, 0 };
		//与X1乘
		for (int i = 0; i < 2; i++)
		{
			for (int j = 0; j < 2; j++)
			{
				long long r = c[i] + (long long)X1[j] * res[j][i];
				c[i] = r%mod;
			}
		}
		return c[0];
	}
};

void main()
{
	Solution4 s;
	cout<<s.Fibonacci(32)<<endl;
	system("pause");
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值