LuoguP3327 [SDOI2015]约数个数和

题目描述

d ( x ) d(x) d(x) x x x 的约数个数,给定 n , m n,m n,m

∑ i = 1 n ∑ j = 1 m d ( i j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij) i=1nj=1md(ij)

引理:

d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1] d(ij)=xiyj[gcd(x,y)=1]

证明:

对于 i j ij ij 的某一个约数 s = p 1 c 1 p 2 c 2 . . . p k c k s=p_1^{c_1}p_2^{c_2}...p_k^{c_k} s=p1c1p2c2...pkck
对于 s s s 的某一个素因子 p p p 设其次数为 c c c,在 i i i 中次数为 a a a ,在 j j j 中次数为 b b b

  • c ≤ a c\leq a ca,在 ( x , y ) = ( c , 0 ) (x,y)=(c,0) (x,y)=(c,0) 时,形成唯一映射
  • c > a c>a c>a,在 ( x , y ) = ( 0 , c − a ) (x,y)=(0,c-a) (x,y)=(0,ca) 时,形成唯一映射
    故有且仅有一组 ( x , y ) (x,y) (x,y) 与素因子 p p p 的次数对应
    注意到 x , y x,y x,y 中至少有一个 0 0 0,所以用 g c d gcd gcd 来限制即可

解法

∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1] i=1nj=1mxiyj[gcd(x,y)=1]
∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j ∑ d ∣ x , d ∣ y μ ( d ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{d|x,d|y}\mu(d) i=1nj=1mxiyjdx,dyμ(d)
∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ ∑ d ∣ x , d ∣ y μ ( d ) \sum\limits_{x=1}^n\sum\limits_{y=1}^m\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\sum\limits_{d|x,d|y}\mu(d) x=1ny=1mxnymdx,dyμ(d)
∑ d = 1 m i n ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n d x ⌋ ⌊ m d y ⌋ \sum\limits_{d=1}^{min(n,m)}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor d=1min(n,m)μ(d)x=1dny=1dmdxndym
∑ d = 1 m i n ( n , m ) μ ( d ) ( ∑ x = 1 ⌊ n d ⌋ ⌊ n d x ⌋ ) ( ∑ y = 1 ⌊ m d ⌋ ⌊ m d y ⌋ ) \sum\limits_{d=1}^{min(n,m)}\mu(d)(\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor)(\sum\limits_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor) d=1min(n,m)μ(d)(x=1dndxn)(y=1dmdym)
f ( x ) = ∑ i = 1 x ⌊ x i ⌋ f(x)=\sum\limits_{i=1}^{x}\lfloor\frac{x}{i}\rfloor f(x)=i=1xix
∑ d = 1 m i n ( n , m ) μ ( d ) ( ∑ x = 1 ⌊ n d ⌋ ⌊ ⌊ n d ⌋ x ⌋ ) ( ∑ y = 1 ⌊ m d ⌋ ⌊ ⌊ m d ⌋ y ⌋ ) \sum\limits_{d=1}^{min(n,m)}\mu(d)(\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{x}\rfloor)(\sum\limits_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{\lfloor\frac{m}{d}\rfloor}{y}\rfloor) d=1min(n,m)μ(d)(x=1dnxdn)(y=1dmydm)

∑ d = 1 m i n ( n , m ) μ ( d ) f ( ⌊ n d ⌋ ) f ( ⌊ m d ⌋ ) \sum\limits_{d=1}^{min(n,m)}\mu(d)f(\lfloor\frac{n}{d}\rfloor)f(\lfloor\frac{m}{d}\rfloor) d=1min(n,m)μ(d)f(dn)f(dm)
到这里就可以直接对 d d d 数论分块。

f ( x ) f(x) f(x)可以用差分的思想,考虑 i i i 的贡献。

i i i f ( i f(i f(i ~ 2 i − 1 ) 2i-1) 2i1) 1 1 1 的贡献
f ( 2 i f(2i f(2i ~ 3 i − 1 ) 3i-1) 3i1) 2 2 2 的贡献
. . . ... ...
差分一下,给 f ( k i ) + = 1 f(ki)+=1 f(ki)+=1 ,对于 i i i 共进行了 n i \frac{n}{i} in 次操作

复杂度 O ( n l n ) \mathcal O(nln) O(nln) 预处理即可。

代码:
#include<cstdio>
#include<map>
#include<algorithm>
using namespace std;
typedef long long LL;
const int P=50005;

int prime[P],pcnt;
bool vis[P];
int mu[P],sum[P],f[P];
void Init() {
	sum[1]=mu[1]=1;
	for(int i=2;i<P;i++) {
		if(!vis[i]) mu[prime[++pcnt]=i]=-1;
		for(int j=1;j<=pcnt&&i*prime[j]<P;j++) {
			vis[i*prime[j]]=true;
			if(i%prime[j]==0) break;
			mu[i*prime[j]]=-mu[i];
		}
		sum[i]=sum[i-1]+mu[i];
	}
	for(int i=1;i<P;i++)
		for(int j=i;j<P;j+=i)
			f[j]++;
	for(int i=1;i<P;i++)
		f[i]+=f[i-1];
}
inline LL Solve(int A,int B) {
	LL ret=0;
	for(int l=1,r;l<=A;l=r+1) {
		r=min(A/(A/l),B/(B/l));
		ret=ret+1ll*(sum[r]-sum[l-1])*f[A/l]*f[B/l];
	}
	return ret;
}
int T,n,m;
int main() {
	Init();
	scanf("%d",&T);
	for(int Cas=1;Cas<=T;Cas++) {
		scanf("%d %d",&n,&m);
		if(n>m) swap(n,m);
		printf("%lld\n",Solve(n,m));
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值