题意:一个长度为n的序列和一个k,求一个排列使的最小。
显然我们需要对序列n从小到大排序,保证相邻两数差值最小,对于序列n我们可以分为长度为n/k和n/k+1的若干个序列且每个序列中每个数的位置相差k,对于每个序列我们的得到的|a[i]-a[i+k]|总和即为|a[n|-a[1]| 。那么我们要解决的便是这若干个序列的划分问题。
令dp[i][j]表示已经确定了i个系列,其中长度为n/k+1的序列有j个。(注意数据会超int)
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <map>
using namespace std;
typedef long long ll;
ll a[1000005],dp[5007][5007];
int main()
{
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
sort(a+1,a+n+1);
for(int i=0;i<=k;i++)
for(int j=0;j<=k;j++)
dp[i][j]=1e17;
dp[0][0]=0;
for(int i=0;i<=k;i++) //已经分了i段
{
for(int j=0;j<=i;j++) //其中长度为k+1的有j个
{
if(i)
{
dp[i][j]=min(dp[i][j],dp[i-1][j]+abs(a[n/k*i+j]-a[n/k*i+j+1-n/k]));
}
if(j)
{
dp[i][j]=min(dp[i][j],dp[i-1][j-1]+abs(a[n/k*i+j]-a[n/k*i+j-n/k]));
}
}
}
cout<<dp[k][n%k]<<endl;
return 0;
}