汽车排产问题单线生产最短时间

关于汽车排产问题

一般汽车排产问题总是被作为动态规划的简单例子,然而这只是考虑一个产品生产的最短路径问题,当大量产品需要在最短时间内生产出来的时候,需要把所有的(哪怕是低效的)产能全部调用起来,此时很难在每个产品进入流水线的每个环节都作出最优选择,不过最短路径作为判别标准,仍然可以作为一种可行的方案。多种结果之间只有进行比较才能判定效率的高低。其中,单线生产作为特殊情况,所需时间可以作为比较的参照物,同时这一问题也有助于我们更好的理解汽车排产问题的面貌

单线所需时间

在这里插入图片描述当有100件商品进入流水线的时候,有些节点堆积着商品,有些节点可能很空闲,作为一个网络问题,每个节点的智能化选择应当考虑全局情况,相互配合才能得到最优解,这是比较困难的,而最短路径的引入在部分意义上考虑了全局情况因而能够化简节点选择的规则,从而得到一个“满意”而非最佳的方案。
而只采用最佳路径生产(单线)所耗用的时间,可以作为一个比较的时间,应为所得结果的上限。
先说结果:
以下证明一个结论,流水线上的耗时最长的节点所用时间是所有产品陆续完工的时间差。以上面的装配线1为例,第一个产品走完流水线不需要任何等待,时长=2+7+9+3+4+8+4+3=40,而最大节点用时为9也就是第一个产品完工后,每隔9秒就会有一个产品完工。100件产品用时总量=40+99*9=931
证明:
所有产品一次离开第一个节点的时差为第一个节点的加工时间,因为所有的产品在这里都必须等待。
为了便于说明假设第一个节点用时为7,如果这个节点耗时最长,其他节点用时为6,5,4等等,那么当后一个产品进入某一道工序时,领先7秒的含产品早已进入下一环节,途中不会有任何停滞,完工时差就为7秒。
假设中间有一个节点为8秒:在前一个商品没有任何等待时间的情况下,后一个产品进入该工序时前一个产品加工了7秒,需等待1秒,离开时两者时长被拉开为8秒。就算前一个商品遇到了阻碍,只要后者在这一节点发生等待,时差就拉长为加工时间8秒。
假设中间有一个最大节点为9秒,那么所有产品离开该环节时差为9秒,以此作为新起点回到第一种情况的讨论,完工时差为9秒,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

圣道寺

您的支持将使我的探索更进一步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值