【CodeForces】【单调队列优化DP】939F Cutlet

CodeForces 939F Cutlet

题目大意

有一块牛排需要两面都需要煎 N N N 秒,现仅有 K K K 个时间段 [ L i , R i ] [L_i, R_i] [Li,Ri] 可以用来翻面,这段时间内可以任意翻转这块牛排。

问最少翻多少次使得牛排两面都煎了 N N N 秒。

分析

神奇的 DP。

定义状态 f ( i , j ) f(i, j) f(i,j) 为在前 i i i 个时间段中,当前朝上的那一面已经被烤了 j j j 秒钟的最小翻转次数。

那么不难列出状态转移方程:

  • 当我们不翻转时: f ( i , j ) = f ( i − 1 , j ) f(i, j) = f(i - 1, j) f(i,j)=f(i1,j)
  • 当我们翻转一次时: f ( i , j ) = f ( i − 1 , i − j ) + 1 f(i, j) = f(i - 1, i - j) + 1 f(i,j)=f(i1,ij)+1,这个转移仅当在区间 [ L i , R i ] [L_i, R_i] [Li,Ri] 内发生。

显然这个转移是 O ( N 2 K ) O(N^2K) O(N2K) 的。我们必须考虑优化


结论: 当我们在一个区间内最多翻转两次牛排。

证明: 当我们在一个区间里翻转三次及以上的牛排时,我们可以发现仅隔一段的两段时间所煎的牛排的面是相同的,于是我们可以通过等价的交换区间来减少牛排翻面的次数。

注意我们翻转两次牛排是为了仅让另一面煎一段时间,而出来时仍然是开始时的那一面。可以证明这种操作是有必要的。


当我们仅翻转一次时,设翻转后两面煎的时间相差 k k k ,翻转的时刻为 j j j ,可以得到翻转后朝上的那一面的煎的时间为 R i − j R_i-j Rij ,朝下的那一面的煎的时间就是 R i − j − k R_i - j - k Rijk

由于翻过来后两面是互换了的,所以有 f ( i , j ) = min ⁡ { f ( i − 1 , R i − j − k ) } + 1 f(i, j) = \min\{f(i - 1, R_i - j - k)\} + 1 f(i,j)=min{f(i1,Rijk)}+1

不难发现有决策单调性,于是采用单调队列维护决策点。

考虑直接枚举 j + k j + k j+k ,然后发现这个转移要倒着枚举。

当我们翻转了两次时,还是设两面煎的时间相差 k k k,又由于翻了两次后还是这一面朝下,所以得到: f ( i , j ) = min ⁡ { f ( i − 1 , j − k ) } + 2 f(i, j) = \min\{ f(i - 1, j - k) \} + 2 f(i,j)=min{f(i1,jk)}+2

同样可以用单调队列维护,但这个转移要顺着枚举了。

故总时间复杂度为 O ( N K ) O(NK) O(NK)

然后为了保证空间不炸我开了滚动数组。

参考代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int Maxn = 200000;
const int Maxk = 100;
const int INF = 0x3f3f3f3f;

int N, K;
int L[Maxk + 5], R[Maxk + 5];

int f[2][Maxn + 5];

int q[Maxn + 5];

int main() {
#ifdef LOACL
	freopen("in.txt", "r", stdin);
	freopen("out.txt", "w", stdout);
#endif
	scanf("%d %d", &N, &K);
	for(int i = 1; i <= K; i++)
		scanf("%d %d", &L[i], &R[i]);
	memset(f[0], 0x3f, sizeof f[0]);
	f[0][0] = 0;
	int z = 1;
	for(int k = 1; k <= K; k++) {
		memcpy(f[z], f[z ^ 1], sizeof f[z]);
		int head = 1, tail = 0;
		for(int i = 0; i <= min(N, R[k]); i++) {
			while(head <= tail && f[z ^ 1][i] <= f[z ^ 1][q[tail]])
				tail--;
			q[++tail] = i;
			while(head <= tail && q[head] < i - (R[k] - L[k]))
				head++;
			f[z][i] = min(f[z][i], f[z ^ 1][q[head]] + 2);
		}
		head = 1, tail = 0;
		for(int i = R[k]; i >= 0; i--) {
			while(head <= tail && f[z ^ 1][R[k] - i] <= f[z ^ 1][q[tail]])
				tail--;
			q[++tail] = R[k] - i;
			while(head <= tail && q[head] < L[k] - i)
				head++;
			f[z][i] = min(f[z][i], f[z ^ 1][q[head]] + 1);
		}
		z ^= 1;
	}
	if(f[z ^ 1][N] >= INF) puts("Hungry");
	else printf("Full\n%d\n", f[z ^ 1][N]);
	return 0;
}
单调栈是一种常用的数据结构,用于解决一类特定的问题,其中最常见的问题是找到数组中每个元素的下一个更大或更小的元素。在Codeforces编程竞赛中,单调栈经常被用于解决一些与数组相关的问题。 下面是单调栈的一般思路: 1. 创建一个空栈。 2. 从左到右遍历数组元素。 3. 对于每个元素,将其与栈顶元素进行比较。 - 如果当前元素小于等于栈顶元素,则将当前元素入栈。 - 如果当前元素大于栈顶元素,则将栈顶元素弹出,并将当前元素入栈。 4. 重复步骤3,直到遍历完所有元素。 这样,最后剩下的栈中元素就是没有下一个更大或更小元素的元素。在使用单调栈求解具体问题时,我们可以根据需要进行一些特定的操作。 例如,如果要找到一个数组中每个元素的下一个更大的元素,可以使用单调递减栈。具体操作如下: 1. 创建一个空栈和一个空结果数组。 2. 从左到右遍历数组元素。 3. 对于每个元素,将其与栈顶元素进行比较。 - 如果当前元素小于等于栈顶元素,则将当前元素入栈。 - 如果当前元素大于栈顶元素,则将栈顶元素弹出,并将其在结果数组中的位置记录为当前元素的下一个更大元素的索引。 4. 将当前元素入栈。 5. 重复步骤3和4,直到遍历完所有元素。 6. 结果数组中没有下一个更大元素的位置,可以设置为-1。 以下是一个使用单调递减栈求解下一个更大元素问题的示例代码: ```cpp #include <iostream> #include <stack> #include <vector> std::vector<int> nextGreaterElement(std::vector<int>& nums) { int n = nums.size(); std::vector<int> result(n, -1); std::stack<int> stack; for (int i = 0; i < n; i++) { while (!stack.empty() && nums[i] > nums[stack.top()]) { result[stack.top()] = i; stack.pop(); } stack.push(i); } return result; } int main() { std::vector<int> nums = {1,3, 2, 4, 5, 1}; std::vector<int> result = nextGreaterElement(nums); for (int i = 0; i < result.size(); i++) { std::cout << "Next greater element for " << nums[i] << ": "; if (result[i] != -1) { std::cout << nums[result[i]]; } else { std::cout << "None"; } std::cout << std::endl; } return 0; } ``` 以上代码将输出: ``` Next greater element for 1: 3 Next greater element for 3: 4 Next greater element for 2: 4 Next greater element for 4: 5 Next greater element for 5: None Next greater element for 1: None ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值