【CodeForces】【DP】958C2 Encryption (medium)

5 篇文章 0 订阅
5 篇文章 0 订阅

CodeForces 958C2 Encryption (medium)

题目

题目传送门

题目大意

给定 N,K,p N , K , p 及一个长度为 N N 的数组A,要求将数组 A A 分成K段,每段求和后对 p p 取模,将每段求得的结果相加,记为S,求 S S 的最大值。

思路

极其明显的一道区间DP题。

sum[i]为前 i i 个数之和模p的值。

定义 f[i][j] f [ i ] [ j ] 为将前 i i 个数分为j段所得的最大值,则易得状态转移方程:

f[i][j]=max(f[k][j1]+(sum[i]sum[k])modp)(1iN,1jK,1k<i) f [ i ] [ j ] = max ( f [ k ] [ j − 1 ] + ( s u m [ i ] − s u m [ k ] ) mod p ) ( 1 ≤ i ≤ N , 1 ≤ j ≤ K , 1 ≤ k < i )

但是,如果这样做的话时间复杂度为 O(N2K) O ( N 2 K ) ,空间复杂度为 O(NK) O ( N K ) ,都过高,但是我们可以发现: p p 倒是很小的,只有100,所以我们可以优化一下:

定义f[i][j]为将 S S p取模后得到的结果为 i i ,分成了j段所得的最大值,可得状态转移方程:

f[sum[i]][j]=max(f[k][j1]+(sum[i]k+p)modp)(1iN,1jK,0k<p) f [ s u m [ i ] ] [ j ] = max ( f [ k ] [ j − 1 ] + ( s u m [ i ] − k + p ) mod p ) ( 1 ≤ i ≤ N , 1 ≤ j ≤ K , 0 ≤ k < p )

这样,时间复杂度就被优化到了 O(p2K) O ( p 2 K ) ,空间复杂度就被优化到了 O(pK) O ( p K )

实现细节

注意:在DP之前将f数组设为-INF,f[0][0]设为0。

正解代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int Maxn=20000,Maxmod=100,Maxk=50;

int N,K,Mod,A[Maxn+5];
int sum[Maxn+5];
int f[Maxmod+5][Maxk+5];

int main() {
    #ifdef LOACL
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    scanf("%d %d %d", &N,&K,&Mod);
    for(int i=1;i<=N;i++) {
        scanf("%d",&A[i]);
        sum[i]=(sum[i-1]+A[i])%Mod;
    }

    for(int i=0;i<=Mod;i++)
        for(int j=0;j<=K;j++)
            f[i][j]=-0x3f3f3f3f;
    f[0][0]=0;

    for(int i=1;i<=N;i++)
        for(int j=K;j>=1;j--)
            for(int k=0;k<Mod;k++)
                f[sum[i]][j]=max(f[sum[i]][j],f[k][j-1]+(sum[i]-k+Mod)%Mod);
    printf("%d\n",f[sum[N]][K]);
    return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值